Page 11 -
P. 11

ix


                            IV   MID-LEVEL VISION                                              253

                            9 Segmentation by Clustering                                        255
                               9.1  Human Vision: Grouping and Gestalt . . . . . . . . . . . . . . . . . 256
                               9.2  Important Applications . . . . . . . . . . . . . . . . . . . . . . . . . 261
                                   9.2.1  Background Subtraction . . . . . . . . . . . . . . . . . . . . . 261
                                   9.2.2  Shot Boundary Detection . . . . . . . . . . . . . . . . . . . . 264
                                   9.2.3  Interactive Segmentation .. .. ... .. ... .. .. ... . 265
                                   9.2.4  Forming Image Regions . .. .. ... .. ... .. .. ... . 266
                               9.3  Image Segmentation by Clustering Pixels .. .. ... .. .. ... . 268
                                   9.3.1  Basic Clustering Methods . . . . . . . . . . . . . . . . . . . . 269
                                   9.3.2  The Watershed Algorithm . . . . . . . . . . . . . . . . . . . . 271
                                   9.3.3  Segmentation Using K-means . . . .. .. ... .. .. ... . 272
                                   9.3.4  Mean Shift: Finding Local Modes in Data . . . . . . . . . . . 273
                                   9.3.5  Clustering and Segmentation with Mean Shift . . . . . . . . . 275
                               9.4  Segmentation, Clustering, and Graphs . . . . . . . . . . . . . . . . . 277
                                   9.4.1  Terminology and Facts for Graphs .. .. ... .. .. ... . 277
                                   9.4.2  Agglomerative Clustering with a Graph . . . . . . . . . . . . 279
                                   9.4.3  Divisive Clustering with a Graph ... .. ... .. .. ... . 281
                                   9.4.4  Normalized Cuts .. ... .. .. ... .. ... .. .. ... . 284
                               9.5  Image Segmentation in Practice . . . . . . . . . . . . . . . . . . . . . 285
                                   9.5.1  Evaluating Segmenters .. .. .. ... .. ... .. .. ... . 286
                               9.6  Notes . . . . . . .. .. .. ... .. .. ... .. ... .. .. ... . 287
                            10 Grouping and Model Fitting                                       290
                               10.1 The Hough Transform . . . . .. .. .. ... .. ... .. .. ... . 290
                                   10.1.1 Fitting Lines with the Hough Transform . ... .. .. ... . 290
                                   10.1.2 Using the Hough Transform . . . . . . . . . . . . . . . . . . . 292
                               10.2 Fitting Lines and Planes .. ... .. .. ... .. ... .. .. ... . 293
                                   10.2.1 Fitting a Single Line ... .. .. ... .. ... .. .. ... . 294
                                   10.2.2 Fitting Planes  . . . . .. .. .. ... .. ... .. .. ... . 295
                                   10.2.3 Fitting Multiple Lines . . . . . . . .. .. ... .. .. ... . 296
                               10.3 Fitting Curved Structures . ... .. .. ... .. ... .. .. ... . 297
                               10.4 Robustness . . . .. .. .. ... .. .. ... .. ... .. .. ... . 299
                                   10.4.1 M-Estimators .. .. ... .. .. ... .. ... .. .. ... . 300
                                   10.4.2 RANSAC: Searching for Good Points . . . . . . . . . . . . . 302
                               10.5 Fitting Using Probabilistic Models . . . . . . . . . . . . . . . . . . . 306
                                   10.5.1 Missing Data Problems . . . . . . . . . . . . . . . . . . . . . 307
                                   10.5.2 Mixture Models and Hidden Variables . . ... .. .. ... . 309
                                   10.5.3 The EM Algorithm for Mixture Models . . . . . . . . . . . . 310
                                   10.5.4 Difficulties with the EM Algorithm . . . . . . . . . . . . . . . 312
   6   7   8   9   10   11   12   13   14   15   16