Page 74 - Control Theory in Biomedical Engineering
P. 74
60 Control theory in biomedical engineering
Falkenstein, E., Tillmann, H., Christ, M., Feuring, M., Wehling, M., 2000. Multiple actions
of steroid hormones–a focus on rapid, nongenomic effects. Pharmacol. Rev.
52, 513–555.
Friedewald, W.T., Levy, R.I., Fredrickson, D.S., 1972. Estimation of the concentration of
low-density lipoprotein cholesterol in plasma, without use of the preparative ultracen-
trifuge. Clin. Chem. 18, 499–502.
Gold, P., Grover, S., Roncari, D.A.K., 1992. Cholesterol and Coronary Heart Disease: The
Great Debate. Parthenon, Carnforth.
Goodman, D.S., Noble, R.P., Dell, R.B., 1973. Three-pool model of the long-term
turnover of plasma cholesterol in man. J. Lipid Res. 14 (1973), 178–188.
Guyton, A.C., Hall, J.E., 2016. Textbook of Medicinal Physiology, 13th ed. Elsevier,
Philadelphia.
Hrydziuszko, O., Wrona, A., Balbus, J., Kubica, K., 2014. Mathematical two-compartment
model of human cholesterol transport in application to high blood cholesterol diagnosis
and treatment. Electron. Notes Theor. Comput. Sci. 306, 19–30. https://doi.org/
10.1016/j.entcs.2014.06.012.
Hrydziuszko, O., Balbus, J., Z ˙ ulpo, M., Wrona, A., Kubica, K., 2015. Mathematical analyses
of two-compartment model of human cholesterol circulatory transport in application to
high blood cholesterol prevention, diagnosis and treatment. Chic. J. Theor. Comput.
Sci. 608, 98–107. https://doi.org/10.1016/j.tcs.2015.07.057.
Johnson, R.L., 2013. Your Digestive System. Lerner Publications Company.
Jones, P.J.H., Schoeller, D.A., 1990. Evidence for diurnal periodicity in human cholesterol
synthesis. J. Lipid Res. 31, 667–673.
Kervizic, G., Corcos, L., 2008. Dynamical modeling of the cholesterol regulatory path-
way with Boolean networks. BMC Syst. Biol. 2, 99. https://doi.org/10.1186/1752-
0509-2-99.
Maxfield, F.R., van Meer, G., 2010. Cholesterol, the central lipid of mammalian cells. Curr.
Opin. Cell Biol. 22, 422–429.
Mc Auley, M.T., Mooney, K.M., 2015. Computationally modeling lipid metabolism and
aging: a mini-review. Comput. Struct. Biotechnol. J. 13, 38–46. https://doi.org/
10.1016/j.csbj.2014.11.006.
Mc Auley, M.T., Wilkinson, D.J., Jones, J.J.L., Kirkwood, T.B.L., 2012. A whole-body
mathematical model of cholesterol metabolism and its age-associated dysregulation.
BMC Syst. Biol. 6(130) https://doi.org/10.1186/1752-0509-6-130.
McNamara, D.J., 2000. Dietary cholesterol and atherosclerosis. Biochim. Biophys. Acta
1529 (1–3), 310–320.
Mishra, S., Somvanshi, P.R., Venkatesh, K.V., 2014. Control of cholesterol homeostasis by
enterohepatic bile transport—the role of feedback mechanisms. RSC Adv.
4, 58964–58975.
Mok, H.Y.I., Perry, P.M., Dowling, R.H., 1974. The control of bile acid pool size. Gut
15, 247–253.
Mukherjee, S., Zha, X., Tabas, I., Maxfield, F.R., 1998. Cholesterol distribution in living
cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog.
Biophys. J. 75, 1915–1925.
Paalvast, Y., Kuivenhoven, J., Groen, A., 2015. Evaluating computational models of choles-
terol metabolism. Biochim. Biophys. Acta 1851, 1360–1376.
Papadakis, M.A., McPhee, S.J., 2014. Current Medical Diagnosis and Treatment. McGraw-
Hill Education.
Pool, F., Sweby, P.K., Tindall, M.J., 2018. An integrated mathematical model of cellular
cholesterol biosynthesis and lipoprotein metabolism. Processes 6, 134. https://doi.
org/10.3390/pr6080134.
Reinitzer, F., 1989. Contributions to the knowledge of cholesterol. Liq. Cryst. 5, 7–18.