Page 563 - Discrete Mathematics and Its Applications
P. 563

542  8 / Advanced Counting Techniques



                                       TABLE 1 Useful Generating Functions.
                                       G(x)                                           a k
                                                  n
                                                           k
                                       (1 + x) n  =  C(n, k)x                         C(n, k)
                                                 k = 0
                                                                    2        n
                                               = 1 + C(n, 1)x + C(n, 2)x + ··· + x
                                                  n

                                                           k k
                                      (1 + ax) n  =  C(n, k)a x                       C(n, k)a k
                                                 k = 0
                                                                     2 2
                                                                                n n
                                               = 1 + C(n, 1)ax + C(n, 2)a x + ··· + a x
                                                  n
                                                           rk
                                           r n
                                      (1 + x )  =   C(n, k)x                          C(n, k/r) if r | k; 0 otherwise
                                                 k = 0
                                                           r
                                               = 1 + C(n, 1)x + C(n, 2)x 2r  + ··· + x rn
                                                  n
                                      1 − x n+1      k          2        n
                                               =    x = 1 + x + x + ··· + x           1if k ≤ n; 0 otherwise
                                        1 − x
                                                 k = 0
                                                  ∞
                                           1         k          2
                                               =    x = 1 + x + x + ···               1
                                         1 − x
                                                 k = 0
                                                  ∞
                                          1          k k           2 2
                                               =    a x = 1 + ax + a x + ···          a k
                                        1 − ax
                                                 k = 0
                                                  ∞
                                          1          rk       r   2r
                                               =    x  = 1 + x + x  + ···             1if r | k; 0 otherwise
                                        1 − x r
                                                 k = 0
                                                  ∞
                                          1                k            2
                                               =    (k + 1)x = 1 + 2x + 3x + ···      k + 1
                                       (1 − x) 2
                                                 k = 0
                                                  ∞
                                          1                       k
                                               =    C(n + k − 1,k)x                   C(n + k − 1,k) = C(n + k − 1,n − 1)
                                       (1 − x) n
                                                 k = 0
                                                                       2
                                               = 1 + C(n, 1)x + C(n + 1, 2)x + ···
                                                  ∞
                                          1                         k k                   k                  k
                                               =    C(n + k − 1,k)(−1) x              (−1) C(n + k − 1,k) = (−1) C(n + k − 1,n − 1)
                                       (1 + x) n
                                                 k = 0
                                                                       2
                                               = 1 − C(n, 1)x + C(n + 1, 2)x − ···
                                                  ∞
                                         1                        k k                              k                   k
                                               =    C(n + k − 1,k)a x                 C(n + k − 1,k)a = C(n + k − 1,n − 1)a
                                      (1 − ax) n
                                                 k = 0
                                                                        2 2
                                               = 1 + C(n, 1)ax + C(n + 1, 2)a x + ···
                                                 ∞   k          2    3
                                                    x          x    x
                                             x
                                            e =       = 1 + x +   +    + ···          1/k!
                                                    k!          2!  3!
                                                k = 0
                                                  ∞     k+1         2    3    4
                                                    (−1)           x    x    x
                                                            k                             k+1
                                       ln(1 + x) =         x = x −    +   −    + ···  (−1)  /k
                                                       k            2   3    4
                                                 k = 1
                                        Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.
   558   559   560   561   562   563   564   565   566   567   568