Page 510 - Design and Operation of Heat Exchangers and their Networks
P. 510
Appendix 493
end
t2(2, i, j) = t2(2, i, j) + e ∗ s;
end
end
for i=1:1: nx1
t2(1, i, 1) = t2(2, i, ny1);
end
n=n+ 1;
fprintf("%d, %e\n", n, smax);
end
fprintf("smax =%e, thm =%f, tcm =%f, 1-thm =%f, e_h =%f\n", ...
smax, thm, tcm, 1 - thm, epsilon_h);
case-55 % BA_5,5
% analytical
N=2;
N1 =N+1;
M=2 ∗ N1;
A = zeros(M, M);
B = ones(M, 1);
A_inv1 = special_function_A_inv(bA, aA, N);
A_inv2 = special_function_A_inv(aB, bB, N);
B1 = special_function_B(aA, N);
B2 = special_function_B(bB, N);
for i=1:N1
for j =1:N1
A(i, j) = A_inv1(i, j);
A(i, j + N1) = B2(i, j);
A(i + N1, j) = B1(i, j);
A(i + N1, j + N1) = A_inv2(i, j);
end
end
B=A\ B; % alpha(i) = B(i), beta(i) = B(i + N1)
Fn = special_function_Fn(aB, bB, N1);
s=0;
for i=1:N1
s=s+B(i +N1) ∗ Fn(i);
end
epsilon_h =1-s/bB;

