Page 510 - Design and Operation of Heat Exchangers and their Networks
P. 510

Appendix  493


                                   end
                                   t2(2, i, j) = t2(2, i, j) + e ∗ s;
                             end
                        end
                        for i=1:1: nx1
                             t2(1, i, 1) = t2(2, i, ny1);
                        end
                        n=n+ 1;
                        fprintf("%d, %e\n", n, smax);
                     end

                     fprintf("smax =%e, thm =%f, tcm =%f, 1-thm =%f, e_h =%f\n", ...
                         smax, thm, tcm, 1 - thm, epsilon_h);

                case-55 % BA_5,5
                     % analytical
                     N=2;
                     N1 =N+1;
                     M=2 ∗ N1;
                     A = zeros(M, M);
                     B = ones(M, 1);
                     A_inv1 = special_function_A_inv(bA, aA, N);
                     A_inv2 = special_function_A_inv(aB, bB, N);
                     B1 = special_function_B(aA, N);
                     B2 = special_function_B(bB, N);
                     for i=1:N1
                          for j =1:N1
                               A(i, j) = A_inv1(i, j);
                               A(i, j + N1) = B2(i, j);
                               A(i + N1, j) = B1(i, j);
                               A(i + N1, j + N1) = A_inv2(i, j);
                          end
                     end
                     B=A\ B; % alpha(i) = B(i), beta(i) = B(i + N1)
                     Fn = special_function_Fn(aB, bB, N1);
                     s=0;
                     for i=1:N1
                          s=s+B(i +N1) ∗ Fn(i);
                     end
                     epsilon_h =1-s/bB;
   505   506   507   508   509   510   511   512   513   514   515