Page 512 - Design and Operation of Heat Exchangers and their Networks
P. 512
Appendix 495
for i=1:1: nx1
for j=1:1:ny1
s = th(i, j) - t1(2, i, j);
if (abs(s) > abs(smax))
smax = s;
end
t1(2, i, j) = t1(2, i, j) + e ∗ s;
s = tc(i, j) - t2(2, i, j);
if (abs(s) > abs(smax))
smax = s;
end
t2(2, i, j) = t2(2, i, j) + e ∗ s;
end
end
for i=1:1: nx1
t2(1, i, 1) = t2(2, nx1 - i + 1, ny1);
end
n=n+ 1;
fprintf("%d, %e\n", n, smax);
end
fprintf("smax =%e, thm =%f, tcm =%f, 1-thm =%f, e_h =%f\n", ...
smax, thm, tcm, 1 - thm, epsilon_h);
case-56
% analytical
N=2;
N1 =N+1;
M=2 ∗ N1;
A = zeros(M, M);
B = ones(M, 1);
A_inv1 = special_function_A_inv(bA, aA, N);
A_id2 = special_function_A_id(aB, bB, N);
B1 = special_function_B(aA, N);
B2 = special_function_B(bB, N);
for i=1:N1
for j =1:N1
A(i, j) = A_inv1(i, j);
A(i, j + N1) = B2(i, j);

