Page 239 - Determinants and Their Applications in Mathematical Physics
P. 239

224   5. Further Determinant Theory
                          ∞           ∞
                              z u m+1    z F r
                               m          r
                       =                     .                      (5.7.13)
                                m!        r!
                          m=0        r=0
          Equating coefficients of z ,
                                n
                                      n
                              F n+1      u r+1 F n−r
                                   =             ,
                               n!       r!(n − r)!
                                     r=0
                                      n
                                          n

                              F n+1 =        u r+1 F n−r .          (5.7.14)
                                          r
                                     r=0
          This recurrence relation in F n is identical in form to the recurrence relation
          in E n given in (5.7.7). Furthermore,
                                 E 1 = F 1 = u 1 ,
                                            2
                                 E 2 = F 2 = u + u 2 .
                                            1
          Hence,

          which proves the theorem.   E n = F n
            Second proof. Express the lemma in the form
                            ∞
                              z  i
                                H (f, g)= f(x + z)g(x − z).         (5.7.15)
                                  i
                               i!
                           i=0
          Hence,

                         H (f, g)= D {f(x + z)g(x − z)}   .         (5.7.16)
                                     i
                           i
                                                       z=0
                                     z
          Put
                             f(x)= e F (x) ,
                              g(x)= e G(x) ,
                                w = F(x + z)+ G(x − z).
          Then,

                    H (e ,e )= D (e )
                                  i
                           G
                     i
                        F
                                     w
                                        z=0
                                  z
                                   i−1
                              = D    (e w z )
                                       w
                                            z=0
                                  z
                                i−1
                                     i − 1

                              =             D i−j (w)D (e )
                                                     j
                                                       w
                                      j      z       z    z=0
                                j=0
                                i−1
                                     i − 1

                              =            ψ i−j H (e ,e ),  i ≥ 1,  (5.7.17)
                                                 j
                                                   F
                                                      G
                                      j
                                j=0
          where

                        ψ r = D (w)
                               r
                                    z=0
                               z
   234   235   236   237   238   239   240   241   242   243   244