Page 371 - Determinants and Their Applications in Mathematical Physics
P. 371
356 Bibliography
E. In¨on¨u, Orthogonality of a set of polynomials encountered in neutron-transport
and radiative-transfer problems. J. Math. Phys. 11 (1970), 568–577.
A. Inselberg, On determinants of Toeplitz–Hessenberg matrices arising in power
series. J. Math. Anal. Applic. 63 (1978), 347–353. [MR 58 (1979), 718.]
D.V. Ionescu, Une identit´ importante et la d´ecomposition d’une forme bilin´eaire
e
en une somme de produits. Gaz. Mat. Fiz. A7 (1955), 303–312. [MR 17
(1956), 229.]
I.S. Iohvidov, Hankel and Toeplitz Matrices and Forms. Algebraic Theory,
Birkh¨auser, Boston, 1982. [MR 83k: 15021. [MR 51 (1976), 11172.]
A.G. Izergin, D.A. Coker, V.E. Korepin, Determinantal formula for the six-vertex
model. J. Phys. A: Math. Gen. 25 (1992), 4315–4334. [PA (1992), 127496.]
P.N. Izvercianu, Appell functions of n − 1 real arguments. Bul. Sti. Tehn. Inst.
Politehn., Timisoara 13 (1968), 13–19. [Zbl 217 (1972), 111.]
E. Jacobsthal, Uber eine determinante. Norske Vid. Selsk. Forh. Trondheim 23
¨
(1951), 127–129. [MR 13 (1952), 98.]
A.A. Jagers, Solution of Problem E 2769 [1979, 307] proposed by J.W. Burgmeier
[A determinant involving derivatives]. Am. Math. Monthly 87 (1980), 490.
A.A. Jagers, Solution of Problem 82-8, proposed by N.J. Boynton. [Zeros of a
determinant]. SIAM Rev. 25 (1983), 271–273.
D.V. Jaiswal, On determinants involving generalized Fibonacci numbers. Fi-
bonacci Quart. 7 (1969), 319–330. [Zbl 191 (1970), 45.]
D.G. James, On the automorphisms of det(x ij). Math. Chron. 9 (1980), 35–40.
[MR 81m: 10044.]
G.D. James, G.E. Murphy, The determinant of the Gram matrix for a Specht
module. J. Alg. 59 (1979), 222–235. [MR 82j: 20025.]
C.R. Johnson, W.W. Barrett, Determinantal inequalities for positive definite
matrices. Discrete Math. 119 (1993), 97–106.
V.N. Joshi, A determinant for rectangular matrices. Bull. Austral. Math. Soc. 21
(1980), 137–146. [MR 81k: 15005; Zbl 421 (1980), 15007.]
T. Jozefiak, P. Pragacz, A determinantal formula for skew Q-functions. J. Lond.
Math. Soc. 43 (1991), 76–90. [MR 92d: 05175.]
D.G. Kabe, Solution of Problem 5312 [1965, 795] proposed by D.S. Mitrinovic [A
Vandermonde operator]. Am. Math. Monthly 73 (1966), 789.
T. Kaczorek, Extension of the method of continuants for n-order linear difference
equations with variable coefficients. Bull. Polish Acad. Sci. Technol. Sci. 33
(1985), 395–400. [MR 89b: 39006.]
K. Kajiwara, J. Satsuma, q-difference version of the two-dimensional Toda lattice
equation. J. Phys. Soc. Japan 60 (1991), 3986–3989. [PA (1992), 39224.]
K. Kajiwara, Y. Ohta, J. Satsuma, B. Grammaticos, Casorati determinant solu-
e
tions for the discrete Painlev´ II equation. J. Phys. A: Math. Gen. 27 (1994),
915–922.
K. Kajiwara, Y. Ohta, J. Satsuma, Cesorati determinant solutions for the discrete
Painlev´ III equation. J. Math. Phys. 36 (1995), 4162–4174. [MR 97j: 39012.]
e

