Page 372 - Determinants and Their Applications in Mathematical Physics
P. 372

Bibliography  357

          K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the
                  e
            Painlev´ IV equation. J. Phys. A: Math. Gen. 31 (1998), 2431–2446.
          S. Kakei, Toda lattice hierarchy and Zamolodchikov’s conjecture. J. Phys. Soc.
            Japan 65 (1996), 337–339.
          S. Kakei, J. Satsuma, Multi-soliton solutions of a coupled system of the nonlinear
            Schr¨odinger equation and the Maxwell–Bloch equations. J. Phys. Soc. Japan
            63 (1994), 885–894.
          S.A. Kamal, Determinant of a general tensor. Matrix Tensor Quart. 31 (1980/81),
            64–66. [MR 82j: 15025; Zbl 524 (1984), 15005.]
          F. Kaminski, On a method of order reduction for a tridiagonal determinant. Bull.
            Acad. Pol. Sci. Ser. Sci. Technol. 29 (1981), 75–81, 419–425. [Zbl 487 (1983),
            15005.]
          T. Kanzaki, Y Watanabe, Determinants of r-fold symmetric multilinear forms.
            J. Alg. 124 (1989), 219–229. [MR 90g: 11052.]
          W. Kaplan, On Circulants. Complex Analysis, Birkh¨auser, Boston, 1988, pp.
            121–130. [MR 90i: 15008.]
          S. Karlin, Determinants and eigenfunctions of Sturm–Liouville equations. J.
            Anal. Math. 9 (1961/62), 365–397. [MR 24A (1962), 3321.]
          S. Karlin, J. McGregor, Determinants of orthogonal polynomials. Bull. Am. Math.
            Soc. 68 (1962), 204–209. [MR 25 (1963), 2250.]
          S. Karlin, J. McGregor, Some properties of determinants of orthogonal poly-
            nomials. Theory and Applications of Special Functions (editor: R.A. Askey),
            Academic Press, New York, 1975, pp. 521–550.
          S. Karlin, G. Szeg¨o, On certain determinants whose elements are orthogonal
            polynomials. J. Anal. Math. 8 (1960/1961), 1–157. [MR 26 (1963), 539.]
          I. Katai, E. Rahmy, Computation of the determinant of five-diagonal symmetric
            Toeplitz matrices. Ann. Univ. Sci. Budapest Sect. Comput. 1979, no. 2, (1981),
            13–31. [MR 83e: 65081.]
          Y. Kato, Fredholm determinants and the solution of the Korteweg–de Vries
            equation. Prog. Theoret. Phys. 76 (1986), 768–783. [MR 88c: 35143.]
          Y. Kato, Fredholm determinants and the Cauchy problem of a class of nonlin-
            ear evolution equations. Prog. Theoret. Phys. 78 (1987), 198–213. [MR 89b:
            35145.]
          H. Kaufman, A bibliographical note on higher order sine functions. Scripta Math.
            28 (1967), 29–36. [MR 35 (1968), 6871.]
                                1      {(n−1)! (n−2)!···1!}
          T. Kawashima, On det  i+j−1  =  (2n−1)! (2n−2)!···n! . Res. Ref. Ashikaga Inst.
            Technol. 9 (1983), 149–154 (Japanese, English summary). [Zbl 529 (1984),
            15003.]
          I. Kay, H.E. Moses, Reflectionless transmission through dielectrics and scattering
            potentials. J. Appl. Phys. 27 (1956), 1503–1508. [PA 60 (1957), 4570.]
          D. Kershaw, A note on orthogonal polynomials. Proc. Edin. Math. Soc. 17 (1970–
            71), 83–93. [MR 42 (1971), 3326.]
          J.B. Kim, J.E. Dowdy, Determinants of n-dimensional matrices. J. Korean Math.
            Soc. 17 (1980/81), 141–146. [MR 81k: 15006.]
   367   368   369   370   371   372   373   374   375   376   377