Page 377 - Determinants and Their Applications in Mathematical Physics
P. 377

362   Bibliography

            1880–1900, Macmillan, New York, 1923; Vol. V, 1900–1920, Blackie, London,
            1930.
          T. Muir (revised and enlarged by W.H. Metzler), A Treatise on the Theory of
            Determinants, Dover, New York, 1960. [See Appendix 13 in this book.]
          T. Muir, The theory of persymmetric determinants from 1894–1919. Proc. Roy.
            Soc. Edin. 47 (1926–1927), 11–33.
          B. Murphy, Expansion of (n − 1)-rowed sub-determinants. Math. Z. 147 (1976),
            205–206. [MR 53 (1977), 2980.]
          I.S. Murphy, A note on the product of complementary principal minors of a
            positive definite matrix. Linear Alg. Applic. 44 (1982), 169–172. [MR 83g:
            15016.]
          D. Mustard, Numerical integration over the n-dimensional spherical shell. Math.
            Comput. 18 (1964), 578–589. [MR 30 (1965), 712.]
          A. Nagai, J. Satsuma, The Lotke–Volterra equations and the QR algorithm. J.
            Phys. Soc. Japan 64 (1995), 3669–3674. [MR 96h: 92014.]
          K. Nagatomo, Explicit description of ansatz E n for the Ernst equation in general
            relativity. J. Math. Phys. 30 (1989), 1100–1102. [PA 92 (1989), 97900.]
          K. Nakamori, The theory of p-dimensional determinants. Yokahama Math. J. 6
            (1958), 79–88. [MR 21 (1960), 678.]
          A. Nakamura, A bilinear N-soliton formula for the KP equation. J. Phys. Soc.
            Japan 58 (1989), 412–422. [PA 92 (1989), 68150; MR 90i: 35257.]
          A. Nakamura, Jacobi structures of the n-soliton solutions of the nonlin-
            ear Schroedinger, the Heisenberg spin and the cylindrical Heisenberg spin
            equations. J. Phys. Soc. Japan 58 (1989), 4334–4343. [MR 91b: 82015.]
          A. Nakamura, The 3 + 1 dimensional Toda molecule equation and its multiple
            soliton solutions. J. Phys. Soc. Japan 58 (1989), 2687–2693. [PA 92 (1989),
            139233; MR 90i: 35258.]
          A. Nakamura, Cylindrical multi-soliton solutions of the Toda molecule equation
            and their large molecule limit of the Toda lattice. J. Phys. Soc. Japan 59
            (1990), 1553–1559. [PA 93 (1990), 93011.]
          A. Nakamura, General cylindrical soliton solutions of the Toda molecule. J. Phys.
            Soc. Japan 59 (1990), 3101–3111. [MR 91h: 35277.]
          A. Nakamura, Bilinear structures of the real 2N-soliton solutions of the Ernst
            equation. J. Phys. Soc. Japan 63 (1994), 1214–1215.
          A. Nakamura, Explicit N-soliton solutions of the 1+1 dimensional Toda molecule
            equation. J. Phys. Soc. Japan 67 (1998), 791–798.
          Y. Nakamura, Symmetries of stationary axially symmetric vacuum Einstein equa-
            tions and the new family of exact solutions. J. Math. Phys. 24 (1983), 606–609.
            [PA 86 (1983), 49226.]
          Y. Nakamura, On a linearisation of the stationary axially symmetric Einstein
            equations. Class. Quantum Grav. 4 (1987), 437–440. [PA 90 (1987), 67098;
            MR 88c: 83027.]
          R. Narayan, R. Nityananda, The maximum determinant method and the
            maximum entropy method. Acta Cryst. A 38 (1982), 122–128. [MR 83m:
            82050.]
   372   373   374   375   376   377   378   379   380   381   382