Page 377 - Determinants and Their Applications in Mathematical Physics
P. 377
362 Bibliography
1880–1900, Macmillan, New York, 1923; Vol. V, 1900–1920, Blackie, London,
1930.
T. Muir (revised and enlarged by W.H. Metzler), A Treatise on the Theory of
Determinants, Dover, New York, 1960. [See Appendix 13 in this book.]
T. Muir, The theory of persymmetric determinants from 1894–1919. Proc. Roy.
Soc. Edin. 47 (1926–1927), 11–33.
B. Murphy, Expansion of (n − 1)-rowed sub-determinants. Math. Z. 147 (1976),
205–206. [MR 53 (1977), 2980.]
I.S. Murphy, A note on the product of complementary principal minors of a
positive definite matrix. Linear Alg. Applic. 44 (1982), 169–172. [MR 83g:
15016.]
D. Mustard, Numerical integration over the n-dimensional spherical shell. Math.
Comput. 18 (1964), 578–589. [MR 30 (1965), 712.]
A. Nagai, J. Satsuma, The Lotke–Volterra equations and the QR algorithm. J.
Phys. Soc. Japan 64 (1995), 3669–3674. [MR 96h: 92014.]
K. Nagatomo, Explicit description of ansatz E n for the Ernst equation in general
relativity. J. Math. Phys. 30 (1989), 1100–1102. [PA 92 (1989), 97900.]
K. Nakamori, The theory of p-dimensional determinants. Yokahama Math. J. 6
(1958), 79–88. [MR 21 (1960), 678.]
A. Nakamura, A bilinear N-soliton formula for the KP equation. J. Phys. Soc.
Japan 58 (1989), 412–422. [PA 92 (1989), 68150; MR 90i: 35257.]
A. Nakamura, Jacobi structures of the n-soliton solutions of the nonlin-
ear Schroedinger, the Heisenberg spin and the cylindrical Heisenberg spin
equations. J. Phys. Soc. Japan 58 (1989), 4334–4343. [MR 91b: 82015.]
A. Nakamura, The 3 + 1 dimensional Toda molecule equation and its multiple
soliton solutions. J. Phys. Soc. Japan 58 (1989), 2687–2693. [PA 92 (1989),
139233; MR 90i: 35258.]
A. Nakamura, Cylindrical multi-soliton solutions of the Toda molecule equation
and their large molecule limit of the Toda lattice. J. Phys. Soc. Japan 59
(1990), 1553–1559. [PA 93 (1990), 93011.]
A. Nakamura, General cylindrical soliton solutions of the Toda molecule. J. Phys.
Soc. Japan 59 (1990), 3101–3111. [MR 91h: 35277.]
A. Nakamura, Bilinear structures of the real 2N-soliton solutions of the Ernst
equation. J. Phys. Soc. Japan 63 (1994), 1214–1215.
A. Nakamura, Explicit N-soliton solutions of the 1+1 dimensional Toda molecule
equation. J. Phys. Soc. Japan 67 (1998), 791–798.
Y. Nakamura, Symmetries of stationary axially symmetric vacuum Einstein equa-
tions and the new family of exact solutions. J. Math. Phys. 24 (1983), 606–609.
[PA 86 (1983), 49226.]
Y. Nakamura, On a linearisation of the stationary axially symmetric Einstein
equations. Class. Quantum Grav. 4 (1987), 437–440. [PA 90 (1987), 67098;
MR 88c: 83027.]
R. Narayan, R. Nityananda, The maximum determinant method and the
maximum entropy method. Acta Cryst. A 38 (1982), 122–128. [MR 83m:
82050.]

