Page 378 - Determinants and Their Applications in Mathematical Physics
P. 378

Bibliography  363

          K. Narita, New nonlinear difference–differential equation related to the Volterra
            equation. J. Math. Anal. Applic. 186 (1994), 120–131.
          B. Nelson, B. Sheeks, Fredholm determinants associated with Wiener integrals.
            J. Math. Phys. 22 (1981), 2132–2136. [Zbl 473 (1983), 28005.]
          G. Neugebauer, A general integral of the axially symmetric stationary Einstein
            equations. J. Phys. A. Math. Gen. 13 (1980), L19–21. [PA 83 (1980), 31622.]
          M. Newman, Determinants of circulants of prime power order. Linear Multilinear
            Alg. 9 (1980), 187–191. [MR 82c: 15020.]
          M. Newman, A result about determinantal divisors. Linear Multilinear Alg. 11
            (1982), 363–366. [MR 83h: 15012.]
          J.D. Niblett, A theorem of Nesbitt. Am. Math. Monthly 59 (1952), 171–174.
          J.J.C. Nimmo, Soliton solutions of three differential–difference equations in
            Wronskian form. Phys. Lett. A 99 (1983), 281–286. [PA 87 (1984), 22595.]
          J.J.C. Nimmo, Wronskian determinants, the KP hierarchy and supersymmetric
            polynomials. J. Phys. A: Math. Gen. 22 (1989), 3213–3221. [PA 92 (1989),
            132225.]
          J.J.C. Nimmo, Hall–Littlewood symmetric functions and the BKP equation. J.
            Phys. A 23 (1990), 751–760. [MR 91g: 05136.]
          J.J.C. Nimmo, A class of solutions of the Konopelchenko–Rogers equations. Phys.
            Lett. A 168 (1992), 113–119. [MR 93f: 35206].
          J.J.C. Nimmo, N.C. Freeman, A method of obtaining the N-soliton solution of
            the Boussinesq equation in terms of a Wronskian. Phys. Lett. 95A (1983),
            4–6. [PA 86 (1983), 64699.]
          J.J.C. Nimmo, N.C. Freeman, Rational solutions of the KdV equation in
            Wronskian form. Phys. Lett. 96A (1983), 443–446. [PA 86 (1983), 98781.]
          J.J.C. Nimmo, N.C. Freeman, The use of B¨acklund transformations in obtaining
            N-soliton solutions in Wronskian form. J. Phys. A 17 (1984), 1415–1424. [PA
            87 (1984), 68001.]
          J.W. Noonan, D.K. Thomas, On the Hankel determinants of areally mean p-
            valent functions. Proc. Lond. Math. Soc. 25 (1972), 503–524. [MR 46 (1973),
            5605.]
          K.I. Noor, Hankel determinant problem for the class of functions with bounded
            boundary rotation. Rev. Roumaine Math. Pures Appl. 28 (1983), 731–739.
            [MR 85f: 30017.]
          W. Oevel, W. Strampp, Wronskian solutions of the constrained KP hierarchy. J.
            Math. Phys. 37 (1996), 6213–6219.
          S. Ogawa, S. Arioka, S. Kida, On linear independency of vector-valued
            mappings—an extension of Wronskian. Math. Jap. 31 (1986), 85–93. [Zbl
            589 (1986), 15001; MR 87g: 15003.]
          Y. Ohta, Pfaffian solutions for the Veselev–Novikov equation. J. Phys. Soc. Japan
            61 (1992), 3928–3933. [PA 96 (1993), 19413.]
          Y. Ohta, R. Hirota, A discrete KdV equation and its Casorati determinant
            solution. J. Phys. Soc. Japan 60 (1991), 2095. [PA 94 (1991), 113667.]
   373   374   375   376   377   378   379   380   381   382   383