Page 381 - Determinants and Their Applications in Mathematical Physics
P. 381
366 Bibliography
D.E. Rutherford, Some continuant determinants arising in physics and chemistry,
I. Proc. Roy. Soc. Edin. A62 (1945), 229–236; II. Proc. Roy. Soc. Edin. A63
(1952), 232–241. [MR 15 (1954), 495.]
H.J. Ryser Maximal determinants in combinatorial investigations. Can. J. Math.
8 (1956), 245–249. [MR 18 (1957), 105.]
G. Salmon, Modern Higher Algebra, Hodges, Figgis, London, 1885.
H.E. Saltzer, A determinant form for nonlinear divided differences with ap-
plications. Z. Angew. Math. Mech. 66 (1986), 183–185. [Zbl 595 (1987),
41001.]
P. Sarnak, Determinants of Laplacians. Commun. Math. Phys. 110 (1987), 113–
120. [MR 89e: 58116.]
N. Sasa, J. Satsuma, A series of exact solutions based on a bilinear form of the
stationary axially symmetric vacuum Einstein equations. J. Phys. Soc. Japan
62 (1993), 1153–1158. [PA 96 (1993), 84963.]
T. Sasaki, Constructing Bezout’s determinants from Sylvester’s determinants.
J. Inf. Process. Japan 6 (1983), 163–166. [PA B87 (1984), 18799; Zbl 545
(1985), 65027.]
T. Sasamoto, M. Wadati, Determinantal form solutions for the derivative
nonlinear Schr¨odinger type model. J. Phys. Soc. Japan 67 (1998), 784–790.
M. Sato, M. Kashiwara, The determinants of matrices of pseudo-differential
operators. Proc. Japan Acad. 51 (1975), 17–19. [Zbl 337 (1977), 35067.]
J. Satsuma, A Wronskian representation of N-soliton solutions of nonlinear evo-
lution equations. Phys. Soc. Jap. Lett. 46 (1979), 359–360. [PA 82 (1979),
25867.]
J. Satsuma, K. Kajiwara, J. Matsukidaira, J. Hietarinta, Solutions of the Broer–
Kaup system through its trilinear form. J. Phys. Soc. Japan 61 (1992), 3096–
3102. [PA (1992), 139300.]
J.W. Schleusner, J.P. Singhal, On determinantal representations for certain
orthogonal polynomials. J. Natur. Sci. Math. 10 (1970), 287–291.
J. Schlitter, A. Metz, The Hessian in function minimization. Int. J. Computer
Math. 24 (1988), 65–72. [Zbl 661 (1989), 65063.]
H. Schmidt, Uber das additionstheorem der zyklishen funktionen. Math. Z. 76
¨
(1961), 46–50. [MR 24A (1962), 276.]
F. Schmittroth, Derivatives of a composite function f[g(x)] [Solution to a problem
proposed by V.F. Ivanoff]. Am. Math. Monthly 68 (1961), 69.
A. Schwartz, J.S. de Wet, The minors of a determinant in terms of Pfaffians.
Proc. Camb. Phil. Soc. 46 (1950), 519–520. [MR 11 (1950), 710.]
R.F. Scott, G.B. Mathews, The Theory of Determinants, 2nd ed., Cambridge
University Press, Cambridge, 1904.
W. Seidel, Note on a persymmetric determinant. Quart. J. Math. (Oxford), 4
(1953), 150–151. [MR 15 (1954), 3.]
E. Seiler, B. Simon, An inequality among determinants. Proc. Nat. Acad. Sci.
USA, 72 (1975), 3277–3278. [MR 55 (1978), 6225.]
C. Shafroth, A generalization of the formula for computing the inverse of a matrix.
Am. Math. Monthly 88 (1981), 614–616. [MR 82j: 15006.]

