Page 384 - Determinants and Their Applications in Mathematical Physics
P. 384

Bibliography  369

          G. Tsoucaris, A new method of phase determination: The “maximum de-
            terminant rule.” Acta Cryst. A 26 (1970), 492–499. [PA 74 (1971),
            5137.]
          Z. Tsuboi, A. Kuniba, Solutions of a discretized Toda field equation for Dfrom
            analytic Bethe ansatz. J. Phys. A: Math. Gen. 29 (1996), 7785–7796.
          P. Turan, On some questions concerning determinants. Ann. Polon. Math. 12
            (1962), 49–53. [Zbl 106 (1964), 15.]
          W.T. Tutte, The factorization of linear graphs. J. Lond. Math. Soc. 22 (1947),
            107–111. [MR 9 (1948), 297.]
          J.L. Ullman, Hankel determinants whose elements are sections of a Taylor series,
            Part 1. Duke Math. J. 18 (1951), 751–756; Part 2. Duke Math. J. 19 (1952),
            155–164. [MR 13 (1952), 221, 926; Zbl 43 (1952), 78.]
          R. Vaidyanathaswamy, A theory of multiplicative arithmetic functions VII, The
            theory of Smith’s determinant. Trans. Am. Math. Soc. 33 (1931), 579–662.
            [Zbl 2 (1932), 113.]
          Y. Vaklev, Soliton solutions and gauge-equivalence for the problem of Zakharov–
            Shabat and its generalizations. J. Math. Phys. 37 (1996), 1393–1413.
          B.N. Valuev, Two definitions of the determinant and a proof of the Szeg¨o–Kac
            theorem. Teoret. Mat. Fiz. 55 (1983), 475–480. [MR 85d: 47029.]
          A.J. van der Poorten, Some determinants which should be better known. J.
            Austral. Math. Soc. A 21 (1976), 278–288. [MR 53 (1977), 10828.]
          P.R. Vein, A lemma on cyclic dislocations in determinants and an application in
            the verification of an identity. Am. Math. Monthly 69 (1962), 120–124. [MR
            24A (1962), 1923.]
          P.R. Vein, Nonlinear ordinary and partial differential equations associated with
            Appell functions. J. Diff. Eqns. 11 (1972), 221–244. [Zbl 227 (1972), 35014.]
          P.R. Vein, Persymmetric determinants 1. The derivatives of determinants with
            Appell function elements. Linear Multilinear Alg. 11 (1982), 253–265. [MR
            83m: 15007a; Zbl 457 (1982), 15004.]
          P.R. Vein, Persymmetric determinants 2. Families of distinct submatrices with
            non-distinct determinants. Linear Multilinear Alg. 11 (1982), 267–276. [MR
            83m: 15007b; Zbl 457 (1982), 15005.]
          P.R. Vein, Persymmetric determinants 3. A basic determinant. Linear Multilinear
            Alg. 11 (1982), 305–315. [MR 83m: 15007c; Zbl 457 (1982), 15006.]
          P.R. Vein, Persymmetric determinants 4. An alternative form of the Yamazaki–
            Hori determinantal solution of the Ernst equation. Linear Multilinear Alg. 12
            (1983), 329–339. [MR 83m: 15007d; Zbl 457 (1982), 15007.]
          P.R. Vein, Persymmetric determinants 5. Families of overlapping coaxial equiv-
            alent determinants. Linear Multilinear Alg. 14 (1983), 131–141. [MR 85e:
            15011.]
          P.R. Vein, Two related families of determinantal solutions of the stationary ax-
            ially symmetric vacuum Einstein equations. Class. Quantum Grav. 2 (1985),
            899–908. [MR 87m: 83024; Zbl 563 (1985), 35079; PA 89 (1986), 24174).]
          P.R. Vein, Identities among certain triangular matrices. Linear Alg. Applic. 82
            (1986), 27–79. [Zbl 598 (1987), 15009; PA 90 (1987), 24353; MR 88a: 05018.]
   379   380   381   382   383   384   385   386   387   388   389