Page 42 - Determinants and Their Applications in Mathematical Physics
P. 42

3.3 The Laplace Expansion  27

          When r =2,

                     A n =   N ir,js A ir,js ,  summed over i, r or j, s,



                        =       a ij  a is   A ir,js .
                                a rj  a rs
          3.3.2  A Classical Proof
          The following proof of the Laplace expansion formula given in (3.3.4) is
          independent of Grassmann algebra.
            Let

                                     A = |a ij | n .
          Then referring to the partial derivative formulas in Section 3.2.3,
                                   ∂A
                                =                                    (3.3.5)
                           A i 1 j 1
                                  ∂a i 1 j 1
                                  ∂A i 1 j 1
                                =       ,  i 1 <i 2 and j 1 <j 2 ,
                        A i 1 i 2 ;j 1 j 2
                                  ∂a i 2 j 2
                                       2
                                     ∂ A
                                =            .                       (3.3.6)
                                  ∂a i 1 j 1  ∂a i 2 j 2
          Continuing in this way,
                                                ∂ A
                                                 r
                                      =                    ,         (3.3.7)
                        A i 1 i 2 ...i r ;j 1 j 2 ...j r
                                        ∂a i 1 j 1  ∂a i 2 j 2  ··· ∂a i r j r
          provided that i 1 <i 2 < ··· <i r and j 1 <j 2 < ··· <j r .
            Expanding A by elements from column j 1 and their cofactors and
          referring to (3.3.5),
                              n

                        A =     a i 1 j 1  A i 1 j 1
                            i 1 =1
                                      ∂A
                              n

                          =     a i 1 j 1
                                    ∂a i 1 j 1
                            i 1 =1
                              n
                                      ∂A
                          =     a i 2 j 2                            (3.3.8)
                                    ∂a i 2 j 2
                            i 2 =1
                                         2
                      ∂A                ∂ A
                              n
                          =     a i 2 j 2
                    ∂a i 1 j 1      ∂a i 1 j 1  ∂a i 2 j 2
                            i 2 =1
                              n

                          =     a i 2 j 2  A i 1 i 2 ;j 1 j 2 ,  i 1 <i 2 and j 1 <j 2 .  (3.3.9)
                            i 2 =1
   37   38   39   40   41   42   43   44   45   46   47