Page 95 - Determinants and Their Applications in Mathematical Physics
P. 95

80   4. Particular Determinants

          ω r is also a function of n, but the n is suppressed to simplify the notation.
          The n numbers
                                        2
                                  1,ω r ,ω ,...,ω n−1                (4.4.5)
                                        r      r
          are the nth roots of unity for any value of r. Two different choices of r give
          rise to the same set of roots but in a different order. It follows from the
          third line in (4.4.4) that
                              n−1

                                 ω =0,    0 ≤ r ≤ n − 1.             (4.4.6)
                                   s
                                  r
                              s=0
          Theorem.
                                      n−1  n
                                              s−1
                                 A n =       ω   a s .
                                              r
                                      r=0 s=1
          Proof. Let
                          n
                              s−1
                     z r =  ω
                             r  a s
                         s=1
                                     2           n−1
                       = a 1 + ω r a 2 + ω a 3 + ··· + ω  a n ,  ω =1.  (4.4.7)
                                                          n
                                     r          r         r
          Then,
                                      2
                   ω r z r = a n + ω r a 1 + ω a 2 + ··· + ω  n−1  
                                      r  2       r  n−1
                   2
                                                     a n−1 
                  ω z r = a n−1 + ω r a n + ω a 1 + ··· + ω  a n−2  
                                                            .        (4.4.8)
                   r                   r           r
                   ............................................ 
                                        2
                                                          
                   ω n−1 z r = a 2 + ω r a 3 + ω a 4 + ··· + ω n−1 a 1
                     r                  r           r
          Express A n in column vector notation and perform a column operation:


                               A n = C 1 C 2 C 3 ··· C n


                                  = C C 2 C 3 ··· C n ,
                                       1


          where
                      n
                         j−1

               C =      ω
                 1       r  C j
                     j=1
                                                            
                       a 1         a 2       a 3               a n
                      a n       a 1     a 2             a n−1 
                                                            
                  =   a n−1     a n   + ω  2  a 1   + ··· + ω  n−1  a n−2 
                        .          .          .                 .
                            + ω r     r            r        
                        .          .          .                 .
                       .        .       .                .  
                       a 2         a 3       a 4               a 1
                  = z r W r ,
          where
                                           2
                              W r = 1 ω r ω ··· ω n−1 T .            (4.4.9)
                                           r    r
   90   91   92   93   94   95   96   97   98   99   100