Page 98 - Determinants and Their Applications in Mathematical Physics
P. 98

4.4 Circulants  83
                                            n−1

                                         n

                                 = exp         ω  (r−1)t  x t
                                        r=1 t=1
                                        n−1    n


                                 = exp     x t   ω  (r−1)t
                                        t=1   r=1
                                 = exp(0).
          The lemma follows.
          Theorem.
                            A = A(H 1 ,H 2 ,H 3 ,...,H n )=1.

          Proof. The definition (4.4.16) implies that
                                                                
                                         H 1   H 2  H 3  ···  H n
                                               H 1  H 2  ··· H n−1 
                                       H n
                                                                
                A(H 1 ,H 2 ,H 3 ,...,H n )=  H n−1  H n  H 1  ··· H n−2 
                                                                
                                         ···   ···  ···  ···  ···
                                         H 2   H 3  H 4  ···  H 1
                                                                   n


                                    = W  −1 diag E 1 E 2 E 3 ...E n W. (4.4.18)
          Taking determinants,
                                                       n

                                                 −1
                       A(H 1 ,H 2 ,H 3 ,...,H n )= W  W    E r .

                                                      r=1
          The theorem follows from Lemma 4.19.
          Illustrations

          When n =2, ω = exp(iπ)= −1.

                                  1    1
                            W =           ,
                                  1 −1
                                 1
                          W −1  = W,
                                 2
                            E r = exp[(−1) r−1 x 1 ],  r =1, 2.
          Let x 1 → x; then,

                                E 1 = e ,
                                      x
                                E 2 = e −x ,

                               H 1   1 1     1    e x
                                   =                  ,
                               H 2   2 1   −1    e −x
                                H 1 =ch x,
                                H 2 =sh x,
   93   94   95   96   97   98   99   100   101   102   103