Page 102 - Determinants and Their Applications in Mathematical Physics
P. 102

4.5 Centrosymmetric Determinants  87


                           a 1 + a 5  a 2 + a 4  2a 3  •   •

                           b 1 + b 5  b 2 + b 4  2b 3  •   •

                            c 1      c 2   c 3    •        •
                       =

                            b 5      b 4   b 3  b 2 − b 4
                                                        b 1 − b 5

                            a 5      a 4   a 3  a 2 − a 4  a 1 − a 5

                          a 1 + a 5  a 2 + a 4

                                                b 2 − b 4  b 1 − b 5
                                           2a 3


                       = b 1 + b 5  b 2 + b 4  2b 3
                                                a 2 − a 4  a 1 − a 5


                            c 1      c 2   c 3
                         1
                       = |E||F|,                                     (4.5.5)
                         2
          where
                                                     
                               a 1  a 2  a 3  a 5  a 4  a 3
                         E =    b 1  b 2  b 3    +    b 5  b 4  b 3   ,
                               c 1  c 2  c 3  c 1  c 2  c 3

                               b 2  b 1   b 4  b 5
                         F =          −          .                   (4.5.6)
                              a 2  a 1   a 4  a 5
          Two of these matrices are submatrices of A 5 . The other two are submatrices
          with their rows or columns arranged in reverse order.
          Exercise. If a determinant A n is symmetric about its principal diagonal
          and persymmetric (Hankel, Section 4.8) about its secondary diagonal, prove
          analytically that A n is centrosymmetric.
          4.5.2  Symmetric Toeplitz Determinants
          The classical Toeplitz determinant A n is defined as follows:
                     A n = |a i−j | n

                            a 0  a −1  a −2  a −3  ··· a −(n−1)

                            a 1   a 0  a −1  a −2  ···  ···

                            a 2   a 1  a 0  a −1  ···  ···
                                                              .
                        =
                            a 3   a 2  a 1  a 0  ···   ···

                            ···   ···  ···  ···  ···   ···

                           a n−1  ···  ···  ···  ···    a 0
                                                             n
          The symmetric Toeplitz determinant T n is defined as follows:
                        T n = |t |i−j| | n

                               t 0  t 1  t 2  t 3  ··· t n−1

                               t 1  t 0  t 1  t 2  ···  ···

                               t 2  t 1  t 0  t 1  ···  ···
                                                           ,         (4.5.7)
                           =
                               t 3  t 2  t 1  t 0  ···  ···

                               ···  ··· ··· ··· ···   ···

                              t n−1  ··· ··· ··· ···  t 0
                                                          n
   97   98   99   100   101   102   103   104   105   106   107