Page 107 - Determinants and Their Applications in Mathematical Physics
P. 107

92   4. Particular Determinants

          4.6.2  A Reciprocal Power Series
          Theorem 4.21. If
                                              −1

                      ∞               ∞

                         (−1) ψ n t =    φ r t r  ,  φ 0 = ψ 0 =1,
                                 r
                             r
                      r=0            r=0
          then

                               φ 1   φ 0

                               φ 2   φ 1  φ 0

                               φ 3   φ 2  φ 1  φ 0         ,

                               .....................
                        ψ r =

                               φ n−1  φ n−2  ...  ...  φ 1  φ 0

                                    φ n−1  ...  ...  φ 2  φ 1 n
                               φ n
          which is a Hessenbergian.
          Proof. The given equation can be expressed in the form
                                                     2
                           2
                                                           3
                                 3
              (φ 0 + φ 1 t + φ 2 t + φ 3 t + ···)(ψ 0 − ψ 1 t + ψ 2 t − ψ 3 t + ···)=1.
          Equating coefficients of powers of t,
                                 n
                                       i+1
                                   (−1)   φ i ψ n−i = 0              (4.6.4)
                                 i=0
          from which it follows that
                                     n
                                           i+1
                               φ n =   (−1)   φ n−i ψ i .            (4.6.5)
                                    i=1
          In some detail,
                      φ 0 ψ 1                            = φ 1
                      φ 1 ψ 1 − φ 0 ψ 2                  = φ 2
                      φ 2 ψ 1 − φ 1 ψ 2 + φ 0 ψ 3        = φ 3
                      .............................................
                      φ n−1 ψ 1 − φ n−2 ψ 2 + ··· +(−1) n+1 φ 0 ψ n = φ n .
          These are n equations in the n variables (−1) r−1 ψ r ,1 ≤ r ≤ n, in which
          the determinant of the coefficients is triangular and equal to 1. Hence,

                              φ 0                             φ 1

                              φ 1    φ 0                      φ 2

                (−1) n−1  ψ n =     φ 2  φ 1  φ 0             φ 3     .
                              ........................................

                              φ n−2  φ n−3  φ n−4  ··· φ 1  φ 0  φ n−1

                             φ n−1  φ n−2  φ n−3  ··· φ 2  φ 1  φ n
                                                                  n
          The proof is completed by transferring the last column to the first position,
          an operation which introduces the factor (−1) n−1 .
   102   103   104   105   106   107   108   109   110   111   112