Page 112 - Determinants and Their Applications in Mathematical Physics
P. 112

4.7 Wronskians  97

             and where
                           φ    =(m +1)φ m−1 ,  φ 0 = constant,
                            m
             prove that

                                  A = n(n − 1)A n−1 .
                                    n
          3. Prove that
                                 1  b 12 xb 13 x 2  ···  ···  b 1,n+1 x n

                                 −1   1   b 23 x         b 2,n+1 x n−1

                n                               ···  ···
                     1 a r x

                                                                n−2
                                     −1     1   ···  ···  b 3,n+1 x    ,
                   −1    1  =

               r=1                         ···  ···  ···     ···

                                                     −1      1

                                                                    n+1
             where
                                           j−1

                                      b ij =  a r .
                                           r=i
          4. If
                                u    u /2! u /3! u (4)  /4! ···



                                u   u     u /2!  u /3!  ···



                                     u     u     u /2!  ···   ,

                         U n =
                                           u       u

                                                        ···

                                                  ···   ···
                                                            n
             prove that
                                           uU
                                             n
                            U n+1 = u U n −    .                (Burgmeier)
                                          n +1
          4.7 Wronskians
          4.7.1  Introduction
          Let y r = y r (x), 1 ≤ r ≤ n, denote n functions each with derivatives of
          orders up to (n − 1). These functions are said to be linearly dependent if
          there exist coefficients λ r , independent of x and not all zero, such that
                                      n

                                        λ r y r = 0                  (4.7.1)
                                     r=1
          for all values of x.
          Theorem 4.24. The necessary condition that the functions y r be linearly
          dependent is that
                                       (i−1)
                                     y      =0

                                      j
                                           n
          identically.
   107   108   109   110   111   112   113   114   115   116   117