Page 109 - Determinants and Their Applications in Mathematical Physics
P. 109

94   4. Particular Determinants

          Also, adjusting the dummy variable in S 1 and referring to (4.6.4) with
          n → n − 1,
                        n−1

                   S 1 =   (−1) (i +1+ a)φ i ψ n−1−i
                               i
                        i=0
                        n−1                      n−1

                      =    (−1) iφ i ψ n−1−i +(1+ a)  (−1) φ i ψ n−1−i
                               i
                                                        i
                        i=1                      i=0
                      = −S 3 .
          Hence, ψ =(a +2 − n)Fψ n−1 , which is equivalent to the stated result.

                  n
          Note that if φ    =(m − 1)φ m−1 , then ψ     = −(m − 1)ψ m−1 .
                      m                     m
          4.6.3  A Hessenberg–Appell Characteristic Polynomial
          Let
                                     A n = |a ij | n ,
          where
                                     a j−i+1 ,j ≥ i,

                              a ij =  −j,    j = i − 1,
                                     0,      otherwise.
          In some detail,

                        a 1  a 2  a 3  a 4  ···  a n−1  a n
                        −1  a 1  a 2  a 3  ···  a n−2  a n−1

                           −2           ···    ···

                                a 1  a 2               ···
                                                       ···   .       (4.6.7)

                                −3 a 1  ···    ···
                 A n =

                                        ···    ···
                                                       ···

                                                a 1
                                                        a 2
                                             −(n − 1)   a 1

                                                            n
          Applying the recurrence relation in Theorem 4.20,
                                  n−1

                      A n =(n − 1)!   a n−r A r  ,  n ≥ 1,  A 0 =1.  (4.6.8)
                                        r!
                                  r=0
          Let B n (x) denote the characteristic polynomial of the matrix A n :

                                   B n = A n − xI .                  (4.6.9)


          This determinant satisfies the recurrence relation
                               n−1

                   B n =(n − 1)!   b n−r B r  ,  n ≥ 1,  B 0 =1,    (4.6.10)
                                     r!
                               r=0
          where
                                   b 1 = a 1 − x,
   104   105   106   107   108   109   110   111   112   113   114