Page 115 - Determinants and Their Applications in Mathematical Physics
P. 115

100   4. Particular Determinants

                      = 0  if the parameters are not distinct
               W      = the sum of the determinants obtained by increasing
                 ijk...r
                        the parameters one at a time by 1 and discarding
                        those determinants with two identical parameters. (4.7.8)

          Illustration. Let


                               W = CC C          = W 012 .

          Then

                      W = W 013 ,

                      W = W 014 + W 023 ,
                     W       = W 015 +2W 024 + W 123 ,
                    W  (4)  = W 016 +3W 025 +2W 034 +3W 124 ,
                    W  (5)  = W 017 +4W 026 +5W 035 +6W 125 +5W 134 ,  (4.7.9)
          etc. Formulas of this type appear in Sections 6.7 and 6.8 on the K dV and
          KP equations.


          4.7.3  The Derivative of a Cofactor

          In order to determine formulas for (W  (n)
                                              ) , it is convenient to change the
                                           ij
          notation used in the previous section.
            Let
                                     W = |w ij | n ,
          where
                                                       d
                                 (j−1)   j−1
                          w ij = y   = D    (y i ),  D =  ,
                                                       dx
                                 i
          and where the y i are arbitrary (n − 1) differentiable functions.
            Clearly,

                                    w = w i,j+1 .
                                      ij
          In column vector notation,

                                W n = C 1 C 2 ··· C n ,


          where
                                    (j−1)  (j−1)
                            C j = y     y    ··· y (j−1) T ,
                                   1     2       n
                            C = C j+1 .

                              j
          Theorem 4.26.
                (n)       (n)     (n+1)

          a. W      = −W  i,j−1  − W    .
               ij                 i,n+1;jn
                (n)       (n+1)

          b. W      = −W        .
               i1         i,n+1;1n
   110   111   112   113   114   115   116   117   118   119   120