Page 118 - Determinants and Their Applications in Mathematical Physics
P. 118

4.7 Wronskians  103

          Then,
                                 ε    = ε r+1,s + ε r,s+1           (4.7.15)
                                  rs
          and
                                    ε r0 = δ r,n−1 .                (4.7.16)

          Differentiating (4.7.16) repeatedly and applying (4.7.15), it is found that

                                   0,      r + s<n − 1
                            ε rs =                                  (4.7.17)
                                   (−1) ,r + s = n − 1.
                                        s
          Hence,
          W(y 1 ,y 2 ,...,y n )W(W  1n ,W  2n ,...,W  nn )
                                                                   )
                                                      )
                                            W  1n  (W  1n     (W  1n (n−1)

                 y 1    y 2   ···                         ···
                                    y n
                 y      y     ···   y       W     (W  )   ···  (W  )
                                              2n    2n           2n (n−1)
                  1      2           n

            =
                ...........................     ................................
                (n−1)   (n−1)      (n−1)
                                                                   )
               y       y                   W  nn  (W  nn    ··· (W  nn (n−1)
                                                      )
                1       2     ··· y n    n                               n

                ε 00    ε 01  ε 02  ···  ···  ε 0,n−2  ε 0,n−1

                ε 10    ε 11  ε 12  ··· ε 1,n−3  ε 1,n−2

                ε 20    ε 21  ε 22  ··· ε 2,n−3
                                                             .      (4.7.18)
            =
                .................................................

                ε n−2,0  ε n−2,1   ···

               ε n−1,0             ···
                                                            n
          From (4.7.17), it follows that those elements which lie above the secondary
          diagonal are zero: those on the secondary diagonal from bottom left to top
          right are
                                 1, −1, 1,..., (−1) n+1
          and the elements represented by the symbol   are irrelevant to the value of
          the determinant, which is 1 for all values of n. The theorem follows.
            The set of functions {W  1n ,W  2n ,...,W  nn } are said to be adjunct to the
          set {y 1 ,y 2 ,...,y n }.
          Exercise. Prove that
            W(y 1 ,y 2 ,...,y n )W(W  r+1,n ,W  r+2,n ,...,W  nn )= W(y 1 ,y 2 ,...,y r ),
                                                          1 ≤ r ≤ n − 1,
          by raising the order of the second Wronskian from (n−r)to n in a manner
          similar to that employed in the section of the Jacobi identity.
          4.7.6 Two-Way Wronskians
          Let
                                                          d
                              (i+j−2)
                                           i+j−2
                       W n = |f     | n = |D   f| n ,  D =  ,
                                                          dx
   113   114   115   116   117   118   119   120   121   122   123