Page 101 - Distillation theory
P. 101

P1: JPJ/FFX  P2: FCH/FFX  QC: VINOD/IYP  T1: FCH
            0521820928c03  CB644-Petlyuk-v1                                                      June 11, 2004  20:12





                                References                                                         75

                            3.  For a mixture of acetone(1)-methanol(2)-chloroform(3)-ethanol(4), determine
                                the location of the boundary between distillation regions. List all the distillation
                                subregions and product simplexes for this mixture. For each product simplex, state
                                all feasible splits without distributed components or pseudocomponents.
                            4.  For the mixture of exercise 3 of composition x F (0.2, 0.4, 0.3, 0.1), determine to
                                which distillation region and to which product simplex (or simplexes) x F belongs,
                                what splits are possible, and what products may be obtained at R =∞ and N =∞.




                                References
                                Balashov, M. I., Grishunin, V. A., & Serafimov, L. A. (1970). The Rules of Configu-
                                  ration of Boundaries of Regions of Continuous Distillation in Ternary Systems.
                                  Transactions of Moscow Institute of Fine Chemical Technology,2,121–6 (Rus.).
                                Balashov, M. I., Grishunin, V. A., & Serafimov, L. A. (1984). Regions of Contin-
                                  uous Rectification in Systems Divided into Distillation Regions. Theor. Found.
                                  Chem. Eng., 18, 427–33.
                                Balashov, M. I., & Serafimov, L. A. (1984). Investigation of the Rules Governing
                                  the Formation of Regions of Continuous Rectification. Theor. Found. Chem.
                                  Eng., 18, 360–366.
                                Bekiaris, N., Meski, G. A., Radu, C. M., & Morari, M. (1993). Multiple Steady
                                  States in Homogeneous Azeotropic Distillation. Ind. Eng. Chem. Res., 32, 2023–
                                  38.
                                Doherty, M. F. (1985). Presynthesis Problem for Homogeneous Azeotropic Dis-
                                  tillations Has Unique Explicit Solution. Chem. Eng. Sci., 40, 1885–9.
                                Doherty, M. F., & Caldarola, G. A. (1985). Design and Synthesis of Homogeneous
                                  Aseotropic Distillations. 3. The Sequencing of Columns for Azeotropic and
                                  Extractive Distillations. Ind. Eng. Chem. Fundam., 24, 474–85.
                                Fidkowski, Z. T., Malone, M. F., & Doherty, M. F. (1993). Computing Azeotropes
                                  in Multicomponent Mixtures. Comput. Chem. Eng., 17, 1141–4.
                                Gmehling,J.,Menke,J.,Fischer,K.,&Krafczyk,J.(1994a).AzeotropicDate.Part1.
                                  New York: VCH.
                                Gmehling,J.,Menke,J.,Fischer,K.,&Krafczyk,J.(1994b).AzeotropicDate.Part2.
                                  New York: VCH.
                                Gurikov, Yu. V. (1958). Some Questions Concerning the Structure of Two-Phase
                                  Liquid-Vapor Equilibrium Diagrams of Ternary Homogeneous Solutions. J.
                                  Phys. Chem., 32, 1980–96 (Rus.).
                                Knight, J. R., & Doherty, M. F. (1990). Systematic Approaches to the Synthesis of
                                  Separation Schemes for Azeotropic Distillation. In Foundation of Computer-
                                  Aided Process Design. Sirola, J. J., Grossmann, I. E., & Stephanopoulos, G.,
                                  editors. New York: Elsevier.
                                Laroche, L., Bekiaris, N., Andersen, H. W., & Morari, M. (1992). Homogeneous
                                  Azeotropic Distillation: Separability and Flowsheet Synthesis. Ind. Eng. Chem.
                                  Res., 31, 2190–209.
                                Ostwald, W. (1900). Dampfdrucke ternarer Gemische, Abhandlungen der
                                  Mathematisch-Physischen Classe der Konige Sachsischen. Gesellschaft der Wis-
                                  senschaften, 25, 413–53 (Germ.).
                                Petlyuk, F. B. (1979). Structure of Concentration Space and Synthesis of Schemes
                                  for Separating Azeotropic Mixtures. Theor. Found. Chem. Eng., 683–9.
   96   97   98   99   100   101   102   103   104   105   106