Page 102 - Distillation theory
P. 102
P1: JPJ/FFX P2: FCH/FFX QC: VINOD/IYP T1: FCH
0521820928c03 CB644-Petlyuk-v1 June 11, 2004 20:12
76 Trajectories of Distillation in Infinite Columns Under Infinite Reflux
Petlyuk, F. B., & Avet’yan, V. S. (1971). Investigation of Three-Component Dis-
tillation at Infinite Reflux. Theor. Found. Chem. Eng.,5,499–510.
Petlyuk, F. B., Avet’yan, V. S., & Inyaeva, G. V. (1977). Possible Product Compo-
sitions for Distillation of Polyazeotropic Mixtures. Theor. Found. Chem. Eng.,
11, 177–83.
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1975a). Thermodynamic and
Topological Analysis of Phase Diagrams of Polyazeotropic Mixtures. 1. Deter-
mination of Distillation Regions Using a Computer. J. Phys. Chem., 49, 1834–5
(Rus.).
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L.A. (1975b). Thermodynamic and
Topological Analysis of Phase Diagrams of Polyazeotropic Mixtures. 2. Algo-
rithm for Construction of Structural Graphs for Azeotropic Ternary Mixtures.
J. Phys. Chem., 49, 1836–7 (Rus.).
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1977). Method for Isolation
of Regions of Rectification Polyazeotropic Mixtures Using an Electronic Com-
puter. Theor. Found. Chem. Eng., 11, 1–7.
Petlyuk, F. B., Kievskii, V. Ya., & Serafimov, L. A. (1979). Determination of
Product Compositions for Polyazeotropic Mixtures Distillation. Theor. Found.
Chem. Eng., 13, 643–9.
Petlyuk, F. B., & Serafimov, L. A. (1983). Multicomponent Distillation. Theory
and Calculation. Moscow: Khimiya (Rus.).
Rooks, R. E., Julka, V., Doherty, M. F., & Malone, M. F. (1998). Structure of
Distillation Regions for Multicomponent Azeotropic Mixtures. AIChE J., 44,
1382–91.
Safrit, B. T., & Westerberg, A. W. (1997). Algorithm for Generating the Distillation
Regions for Azeotropic Multicomponent Mixtures. Ind. Eng. Chem. Res., 36,
1827–40.
Sargent, R. W. S. H. (1994). A Functional Approach to Process Synthesis and
Its Application to Distillation Systems. Tech. Rep. Centre for Process Systems
Engineering. London: Imperial College.
Schreinemakers, F. A. H. (1901). Dampfdrucke ternarer Gemische. Z. Phys.
Chem., 36, 413–49 (Germ.).
Stichlmair, J. G., Fair, J. R., & Bravo, J. L. (1989). Separation of Azeotropic Mix-
tures via Enhanced Distillation. Chem. Eng. Prog., 85, 63–6.
Thormann, K. (1928). Destillieren and Rektifizieren. Leipzig: Verlag von Otto
Spamer (Germ.).
Wahnschafft, O. M. (1997). Advanced Distillation Synthesis Techniques for Non-
ideal Mixtures Are Making Headway in Industrial Applications. Paper presented
at Distillation and Absorption Conference, Maastricht, pp. 613–23.
Wahnschafft, O. M., Le Redulier, J. P., & Westerberg A. W. (1993). A Problem
Decomposition Approach for the Synthesis of Complex Separation Processes
with Recycles. Ind. Eng. Chem. Res., 32, 1121–40.
Zharov, V. T. (1968). Phase Representations and Rectification of Multicomponent
Solutions. J. Appl. Chem., 41, 2530–41 (Rus.).
Zharov, V. T., & Serafimov, L. A. (1975). Physico-Chemical Foundations of Bath
Open Distillation and Distillation. Leningrad: Khimiya (Rus.).