Page 177 - Distillation theory
P. 177

P1: JPJ/FFX  P2: FCH/FFX  QC: FCH/FFX  T1: FCH
            0521820928c05  CB644-Petlyuk-v1                                                      June 11, 2004  20:15





                                5.6 Conditions of Section Trajectories Joining and Methods        151

                                                   V
                                                    r y f-1
                                a)   L r x f-1             f-1
                                    L F x F
                                                    V s f y'
                                                           f
                                          (L +L ) x
                                           F  r  f
                                                           L s  f x'
                                                   V s y f+1
                                      x                    f+1
                                     L s f+1
                                                                Figure 5.29. Models of feed tray: (a) first mixing
                                                                then attain equilibrium, and (b) mixing and attain
                                                                equilibrium simultaneously.
                                                   V r y f-1
                                     L r x f-1
                                                           f-1
                                b)
                                                   V s f y
                                    L F x F
                                                           f
                                                 (L +L )x fr
                                                  F
                                                   V s y f+1
                                      x                    f+1
                                     L s f+1



                        5.6.2. Conditions of Section Trajectories Joining

                                As we saw in the previous sections, at the increase of the parameter (L/V) r in
                                top section and of the parameter (V/L) s in bottom section trajectory bundles of
                                sections Reg R  and Reg R  increase, filling up bigger and bigger parts of con-
                                           w,r       w,s
                                centration simple. Along with that the increase of the parameter (L/V) r leads to
                                the certain increase of the parameter (V/L) s in accordance with the equations of
                                material and thermal balance of the column at given x D and x B .
                                  At some value of parameter (L/V) min , trajectory bundles of sections Reg r and
                                                                r
                                Reg s adjoin each other by their boundary elements – separatrix min-reflux re-
                                        min,R    2              2              min,R   2
                                                      +
                                                                     +
                                gions Reg sep,r  ≡ (S ⇒ N , shortly S − N ) and Reg sep,s  ≡ (S ⇒ N , shortly
                                                                                             +
                                                                                       s
                                                                                             s
                                                      r
                                                                r
                                                                     r
                                                r
                                 2
                                S − N ), mostly remote from product points x D and x B , if one uses for determi-
                                      +
                                     s
                                 s
                                nation of (L/V) min  the model in Fig. 5.29b, or if validity of condition (Eq. [5.18]) is
                                             r
                                achieved between some points of these boundary elements, if one uses the model
                                in Fig. 5.29a. At this value of the parameter (L/V) min , the distillation process
                                                                             r
                                becomes feasible in infinite column at set product compositions. Such distillation
                                mode is called the mode of minimum reflux. It follows from the analysis of bun-
                                                             2
                                                 2
                                dle dimensionality S − N and S − N that, at separation without distributed
                                                      +
                                                                  +
                                                 r    r      s    s
                                components, points x f −1 and x f can be located in these bundles only at one value
                                of the parameter (L/V) r .
                                  Really, the split without distributed components 1, 2 ... k : k + 1, ... n the dimen-
                                                    2
                                                         +
                                sionalityofthebundle S − N isequalto(n−k−1)anddimensionalityofbundle
                                                    r   r
                                 2
                                      +
                                S − N is equal (k − 1) (see section 5.5). Therefore, total dimensionality of those
                                 s   s
                                bundles is equal to (n − 2) at dimensionality of concentration simplex (n − 1).
   172   173   174   175   176   177   178   179   180   181   182