Page 309 - Distillation theory
P. 309

P1: JPJ/FFX  P2: FCH/FFX  QC: FCH/FFX  T1: FCH
            0521820928c08  CB644-Petlyuk-v1                                                      June 11, 2004  20:20





                                8.4 Multicomponent Azeotropic Mixtures: Presynthesis              283

                                3,4,5
                                   t
                                Reg ≡ [min x 1−2−5 − max x 1−2−3 ] (common part of segments [0-1], [0 – max
                                   r        t2          t2
                                 1,2
                                                                  3,4,5   3        4    5
                                 1−2−3           1−2−5               t      t      t      t
                                x    ], and [min x     – 1]) (i.e., Reg = Reg • Reg • Reg ). For each
                                 t2              t2                  r      r      r      r
                                                                  1,2    1,2      1,2   1,2
                                tear-off point at segment [min x 1−2−5  − max x 1−2−3  ], there are three prod-
                                                             t2           t2
                                uct points x 1−2−3 , x 1−2−4 , and x 1−2−5  at separation of mixtures 1,2,3; 1,2,4, and
                                          D2     D2        D2
                                                                         3,4,5
                                1,2,5, respectively. Possible product segment Reg D at adiabatic distillation of
                                                                          1,2
                                a five-component mixture is a common part of possible product segments at
                                adiabatic distillation of mixtures 1,2,3; 1,2,4, and 1,2,5 for tear-off points at seg-
                                     3,4,5                               3
                                                 1−2−5
                                        t
                                ment Reg ≡ [min x t2  − max x 1−2−3  ] (i.e., Reg D is function of K 1 , K 2 , and K 3
                                                             t2
                                        r
                                      1,2                               1,2
                                           3,4,5                          4
                                             t
                                at segment Reg [see for example Fig. 4.11], Reg D is function of K 1 , K 2 , and
                                             r
                                           1,2 3,4,5  5                  1,2                 3,4,5
                                                t
                                                                                                t
                                K 4 at segment Reg , Reg D is function of K 1 , K 2 , and K 5 at segment Reg and
                                                r                                               r
                                              1,2   1,2                                       1,2
                                3,4,5    3      4     5                3,4,5
                                Reg D = Reg D • Reg D • Reg D ). This segment Reg D is located between point x D2 =
                                 1,2     1,2   1,2   1,2               1,2
                                0 and point x D2 = min[max x 1−2−3 , max x 1−2−4 , max x 1−2−5 ]. In the example un-
                                                         D2
                                                                              D2
                                                                    D2
                                                   Reg t      Reg t      Reg t
                                                       r         r          r
                                                                            3,4,5
                                der consideration, possible top product segment is Reg D = [0, max x 1−2−5 ].
                                                                                           D2
                                                                             1,2     Reg t
                                                                                         r
                                  In the general case, if components of edge are components i 1 and i 2 and the
                                                                                               j 1 ÷ j k
                                other components are j 1 , j 2 ,... j k , then possible product segments are Reg D =
                                                                                               i 1 ,i 2
                                  j 1   j 2       j k                j 1 ÷ j k  j 1  j 2     j k
                                Reg D • Reg D ... • Reg D = [0, max x D ]or Reg B = Reg B • Reg B ... • Reg B = [0,
                                 i 1 ,i 2  i 1 ,i 2  i 1 ,i 2        i 1 ,i 2  i 1 ,i 2  i 1 ,i 2  i 1 ,i 2
                                max x B ], where the ends of the segments are:
                                                       i 1 −i 2 − j
                                    max x D = min[max x D   ]                                   (8.10)
                                               j  Reg t
                                                     r
                                                       i 1 −i 2 − j
                                     max x B = min[max x B  ]                                   (8.11)
                                               j  Reg t
                                                     r
                        8.4.2. Possible Product Regions at the Boundary Elements of
                                Concentration Simplex
                                                       j        j
                                                        (k)      (k)                         (k)
                                Possible product regions Reg and Reg at the faces and hyperfaces (C ) of the
                                                        D         B
                                                       i        i                           j
                                concentration simplex have its edges as their boundary elements Reg bound,D and
                                    j                                                       i
                                Reg bound,B . Figures 8.9 and 8.10 show possible location of these regions in two-
                                    i            j                                  j
                                                   (3)                               (4)
                                dimensionalfacesReg andthree-dimensionalhyperfacesReg ofconcentration
                                                   D                                 D
                                                 i                                  i
                                simplex, respectively. As one can see in these figures, possible product regions
                                  j         j
                                   (k)       (k)
                                Reg  and Reg   are polygons, polyhedrons, or hyperpolyhedrons, part of the
                                   D         B
                                  i         i
   304   305   306   307   308   309   310   311   312   313   314