Page 223 - Distributed model predictive control for plant-wide systems
P. 223

Cooperative Distributed Predictive Control with Constraints            197


             The state predicted at time k − 1 is given by
                              ̂ x(k + l|k − 1, i)
                                                l
                                               ∑   l−h
                                    l+1
                                = A   x(k − 1)+  A   B u (k + h − 1|k − 1)
                                                      i i
                                               h=0
                                         l
                                     ∑ ∑    l−h
                                  +       A   B u (k + h − 1|k − 2)
                                               j j
                                     j∈P i h=0
             Subtracting (9.20) from (9.19), the discrepancy between the feasible state sequence and the
             state sequence predicted at time k − 1 is obtained as
                       ‖ f                     ‖
                       ‖x (k + l|k) − ̂ x(k + l|k − 1, i)‖
                       ‖                       ‖P
                           ‖ l                                             ‖
                           ‖∑ ∑     l−h  (                                )‖
                         =  ‖     A   B u (k + h − 1|k − 1) − u (k + h − 1|k − 2)  ‖
                                          j
                                       j
                                                            j
                           ‖                                               ‖
                           ‖                                               ‖
                            h=0 j∈P i                                      ‖P
                           ‖
               Let S be the subsystem that maximizes
                   r
                            l
                           ∑
                                 u (k + h − 1|k − 1) − u (k + h − 1|k − 2) , i ∈ P
                                ‖
                                l−h‖ i              i             ‖
                                                                  ‖2
                           h=0
               Then, the following equation can be deduced from (9.21):
                           ‖ f                     ‖
                           ‖x (k + l|k) − ̂ x(k + l|k − 1, i)‖
                           ‖                       ‖P
                                l
                               ∑
                                      u (k + h − 1|k − 1) − u (k + h − 1|k − 2)
                             ≤       l−h‖ r              r             ‖
                                     ‖
                                                                       ‖2
                               h=0
               Since there is a solution at update time 0, 1, 2, … , k − 1, ∀i ∈ P satisfied the constraint (9.8),
             for all l = 1, 2, … , N − 1, it has
                       l
                      ∑
                             u (k + h − 1|k − 1) − u (k + h − 1|k − 2)
                            l−h‖ r              r             ‖  ≤         ∕(m − 1)
                            ‖
                                                              ‖2
                      h=0
             Then, for l = 1, 2, … , N − 1, following equation can be deduced:
                                 ‖ f                      ‖
                                 ‖x (k + l|k) − ̂ x(k + l|k − 1, i)‖ ≤         
                                 ‖                        ‖P
             Thus, (9.18) holds for all l = 1, 2, … , N − 1.
               When l = N, from (9.16) and (9.17), it has
                          ‖ f                       ‖
                          ‖x (k + N|k) − ̂ x(k + N|k − 1, i)‖
                          ‖                         ‖P
                                    T   ‖ f                             ‖
                            ≤     (A A )‖x (k + N − 1|k) − ̂ x(k + N − 1|k − 1, i)‖
                               max  c  c
                                        ‖                               ‖P
                            ≤ (1 −   )        
             Consequently, (9.18) holds for all l = 1, 2, … , N.
   218   219   220   221   222   223   224   225   226   227   228