Page 226 - Distributed model predictive control for plant-wide systems
P. 226

200                           Distributed Model Predictive Control for Plant-Wide Systems


             Since the performance index of S , ∀i ∈ P, with the optimal solution of u (⋅|k) must be not
                                        i
                                                                        i
                                                                  f
           more than the performance index of S with the feasible solution of u (⋅|k). Thus it has
                                          i
                                                                  i
                          V − V
                           k,i  k−1,i
                            ≤ −‖̂ x (k − 1|k − 1, i)‖ − u (k − 1|k − 1) ‖
                                                  ‖
                                               Q  ‖ i          ‖R i
                                N−2 (                          )
                                ∑    ‖ f           ‖ f
                                                            ‖
                                              ‖
                              +      ‖x (k + l|k)‖ + ‖u (k + l|k)‖
                                                     i
                                     ‖        ‖Q   ‖        ‖R i
                                l=0
                                (                                   )
                                 ‖ f           ‖    ‖ f           ‖
                              + ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖
                                                      i
                                 ‖             ‖Q   ‖             ‖R i
                                ‖ f        ‖
                              + ‖x (k + N|k)‖
                                ‖          ‖P
                                N−2 (                                 )
                                ∑
                              −     ‖̂ x (k + l|k − 1, i)‖ + ̂ u (k + l|k − 1) ‖
                                                      ‖
                                                   Q  ‖ i          ‖R i
                                l=0
                                (                    )
                              − ‖̂ x (k + N − 1|k − 1, i)‖ P
           assuming  x(k)∈ X∖Ω(  ),  that  is  ‖̂ x (k − 1|k − 1, i)‖ ≥     .  Considering  that
                                                             Q
           ‖u (k − 1| k − 1)‖ > 0 and substituting Equation (9.18) into Equation (9.31) yields
             i           R
                                           ′
                        V − V k−1,i  ≤ −  e +    (N − 1)      e
                         k,i
                                      ‖ f           ‖   ‖ f           ‖
                                    + ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖
                                                          i
                                      ‖             ‖Q  ‖             ‖R
                                      ‖ f       ‖
                                    + ‖x (k + N|k)‖ − ‖̂ x (k + N − 1|k − 1, i)‖ P
                                      ‖         ‖P
             In the above equation, consider the terms from the third term to the fifth term, it has
                      (                                                   ) 2
                     1  ‖ f           ‖   ‖ f           ‖    ‖ f        ‖ 2
                        ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖  + ‖x (k + N|k)‖
                                            i
                     2  ‖             ‖Q  ‖             ‖R i  ‖         ‖P
                                        2                 2               2
                         ‖ f           ‖   ‖ f           ‖    ‖ f        ‖
                       ≤ ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖  + ‖x (k + N|k)‖
                                              i
                         ‖             ‖Q  ‖             ‖R i  ‖         ‖P
                                        2                 2              2
                         ‖ f           ‖   ‖ f           ‖    ‖ f       ‖
                       ≤ ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖ + ‖x (k + N|k)‖
                         ‖             ‖Q  ‖             ‖R   ‖         ‖P
                                                                        T
                                            f
                                                                               T
                                                               ̂
             Notice that  ‖ f f     ‖ 2  = A x (k + N − 1|k) ‖ 2  and Q = Q + K RK, A PA −
                         x x (k + N|k)
                                        ‖
                        ‖           ‖P  ‖ c             ‖P                     c   c
                 ̂
           P =−Q, it has
                                       2                 2              2
                        ‖ f           ‖   ‖ f           ‖    ‖ f       ‖
                        ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖ + ‖x (k + N|k)‖
                        ‖             ‖Q  ‖             ‖R   ‖         ‖P
                                           2                   2
                            ‖ f           ‖   ‖    f          ‖
                                                 c
                          ≤ ‖x (k + N − 1|k)‖ + ‖A x (k + N − 1|k)‖
                            ‖             ‖ ̂ Q  ‖            ‖P
                                           2
                            ‖ f           ‖
                          = ‖x (k + N − 1|k)‖
                            ‖             ‖P
   221   222   223   224   225   226   227   228   229   230   231