Page 63 - Distributed model predictive control for plant-wide systems
P. 63

Model Predictive Control                                                37


                 V(k)− V(k − 1)
                               N−1
                               ∑            2             2
                            2
               = ‖x(k + N|k)‖ +   (‖x(k + l|k)‖ + ‖u(k + l|k)‖ )
                            P               Q             R
                               l=0
                                       N−1
                                        ∑                  2                   2
                                    2
                 − ‖x(k − 1 + N|k − 1)‖ −  (‖x(k − 1 + l|k − 1)‖ + ‖u(k − 1 + l|k − 1)‖ )
                                    P                      Q                   R
                                        l=0
                                N−1
                                ∑    f        2    f       2                      (2.47)
                             2
                   f
               ≤ ‖x (k + N|k)‖ +   (‖x (k + l|k)‖ + ‖u (k + l|k)‖ )
                             P                Q            R
                                l=0
                                       N−1
                                        ∑                  2                   2
                                    2
                 − ‖x(k − 1 + N|k − 1)‖ −  (‖x(k − 1 + l|k − 1)‖ + ‖u(k − 1 + l|k − 1)‖ )
                                    P                      Q                   R
                                        l=0
                   f         2    f           2     f           2
               = ‖x (k + N|k)‖ + ‖x (k + N − 1|k)‖ + ‖u (k + N − 1|k)‖
                             P                Q                 R
                                    2                2                2
                 − ‖x(k − 1 + N|k − 1)‖ − ‖x(k − 1|k − 1)‖ − ‖u(k − 1|k − 1)‖
                                    P                Q                R
               Substituting (2.44), (2.45), and (2.39) into (2.47) yields
                 V(k)− V(k − 1)
                                     2                   2                     2
                = ‖A x(k − 1 + N|k − 1)‖ + ‖x(k − 1 + N|k − 1)‖ + ‖Kx(k − 1 + N|k − 1)‖
                    c                P                   Q                     R
                                    2                2                2
                  − ‖x(k − 1 + N|k − 1)‖ − ‖x(k − 1|k − 1)‖ − ‖u(k − 1|k − 1)‖
                                    P                Q                R
                                   2
                = ‖x(k − 1 + N|k − 1)‖                                            (2.48)
                                   P
                                    2                2                2
                  − ‖x(k − 1 + N|k − 1)‖ − ‖x(k − 1|k − 1)‖ − ‖u(k − 1|k − 1)‖
                                    P                Q                R
                                2                2
                =−‖x(k − 1|k − 1)‖ − ‖u(k − 1|k − 1)‖
                                Q                R
                < 0
               Thus, for any k ≥ 0, if x(k)∈ X∖Ω(  ), there is a constant    ∈ (0, ∞) such that
                                                                   ′
                                                                               ′
             V(k) ≤ V(k − 1) −   . It then follows that there exists a finite time k such that x(k ) ∈Ω (  ).
             This concludes the proof of stability of dual mode predictive control.
               We have now established the feasibility and the stability of the resulting closed-loop system.
             That is, if an initially feasible solution could be found, subsequent feasibility of the algorithm
             is guaranteed at every update, and the resulting closed-loop system is asymptotically stable at
             the origin.
             2.5  Conclusion
             In this chapter, we introduced three MPC algorithms: dynamic matrix control, state
             space-based MPC, and dual mode MPC. These three algorithms are very important and
             are the fundamental of the distributed predictive controls which will be introduced in the
             following chapters.
   58   59   60   61   62   63   64   65   66   67   68