Page 97 - Distributed model predictive control for plant-wide systems
P. 97

Local Cost Optimization-based Distributed Model Predictive Control      71


             5.2.2.2  Predictive Model
             To predict the future state of the current subsystem S , the only information that each controller
                                                      i
             C , i = 1, … , n, needs is the future behavior of subsystems S controlled by the agents C ∈ P .
              i                                             j                    j   +i
             Similarly, C should broadcast the future behavior of the local variables only to the agents
                      i
             C ∈ P . Then the states and outputs of the downstream neighbors in l-step ahead can be
              j   −i
             predicted by
                                                    l
                             ⎧
                                                   ∑
                                          l
                             ⎪ ̂ x (k + l|k) = A ̂ x (k|k)+  A s−1 B u (k + l − s|k)
                               i          ii i         ii  ii i
                             ⎪
                                                   s=1
                             ⎪
                                    l                                              (5.6)
                             ⎨     ∑   s−1
                                  +   A   ̂ w (k + l − s|k − 1)
                             ⎪             i
                                       ii
                             ⎪     s=1
                              ̂ y (k + l|k)= C ̂ x (k + l|k)+ ̂ v (k + l|k − 1)
                             ⎪
                             ⎩ i          ii i        i
             5.2.2.3  Optimization Problem
             From above, the optimization problem for each subsystem-based local cost optimization-based
             MPC (LCO-MPC) in each control cycle can be concluded as follows.
             Problem 5.1  For each independent controller C , i = 1, … , m, the unconstrained LCO-
                                                      i
             DMPC problem with the prediction horizon P and control horizon M, M < P,attime k solves
             the following optimization problem:
                               P                            M
                              ∑               d        2   ∑                  2
                                 ‖̂ y (k + l |k) − y (k + l|k)‖⌢ +
                   min  J (k)=   ‖  i                 ‖       ‖ Δu (k + l − 1 |k) ‖  (5.7)
                         i
                                                                  i
                 ΔU i (k,M|k)    ‖            i       ‖Q      ‖              ‖R i
                              l=1                       i  l=1
             for i = 1, … , m, subject to constraints
                                                   l
                                                  ∑
                                          l
                              ̂ x (k + l|k)= A ̂ x (k|k)+  A s−1 B u (k + l − s|k)
                               i          ii i        ii  ii i
                                                  s=1
                                           l
                                          ∑   s−1
                                        +    A   ̂ w (k + l − s|k − 1)             (5.8)
                                              ii  i
                                          s=1
                              ̂ y (k + l|k)= C ̂ x (k + l|k)+ ̂ v (k + l|k − l)    (5.9)
                                                      i
                               i
                                          ii i
             where ΔU (k, M|k) = {Δu (k|k), … , Δu (k + M − 1|k)}.
                     i
                                 i
                                            i
               Each controller C is composed of three parts: an optimizer, a state predictor, and an
                             i
             interaction predictor. At time k, based on the exchanged information, the interaction predictor
             of the MPC controller C estimates the future interaction sequence over the prediction horizon
                                i
             ˆ w (k + l − 1|k − 1), l = 1, … , P. Then, combing with the local state measurement of x (k),
                                                                                    i
              i
             Problem 5.1 can be solved by the optimizer that computes the optimal manipulated variable
   92   93   94   95   96   97   98   99   100   101   102