Page 205 - Dynamics of Mechanical Systems
P. 205

0593_C06_fm  Page 186  Monday, May 6, 2002  2:28 PM





                       186                                                 Dynamics of Mechanical Systems


                        *
                                                       *
                       T . It is generally convenient to let F  pass through the mass center G of the body. Then,
                              *
                       F  and T  are:
                        *
                                                             N
                                                                  a )
                                                        F = ∑  − ( m ii                         (6.9.5)
                                                         *
                                                             = i 1
                        and:

                                                           N
                                                      T =    r × − ( m a )                      (6.9.6)
                                                        *
                                                          ∑ i       i i
                                                           = i 1
                       where r  locates P  relative to G.
                              i
                                      i
                        Using Eq. (4.9.6), we see that because both P  and G are fixed on B, a  may be expressed as:
                                                               i
                                                                                   i
                                                   a =  a + αα × r + ωω ×(ωω × r )              (6.9.7)
                                                    i   G     i         i
                       where αα αα and ωω ωω are the angular acceleration and angular velocity of B in R. Hence, by
                       substituting into Eq. (6.9.5), F* becomes:

                                             N
                                        F = ∑  −m  [ i  a + αα × r + ωω ×(ωω × r )]
                                         *
                                                    G
                                                           i
                                                                     i
                                             = i 1
                                               N          N               N      
                                                                 r ) − ωω
                                           =− ∑ m i  a − αα × ∑ (m i i  × ωω × ∑ (m ii r )  (6.9.8)
                                                     G
                                              i  =1       = i 1          = i 1   
                                                               × )
                                                     × − ωω
                                           =−M a − αα 0    ×(ωω 0
                                                G
                       or
                                                          F =−M a                               (6.9.9)
                                                                 G
                       where M is the total mass of B and where the last two terms of Eq. (6.9.8) are zero because
                       G is the mass center of B (see Eq. (6.8.3)).
                                                                  *
                        Similarly, by substituting for a  in Eq. (6.9.6), T  becomes:
                                                    i
                                         N
                                    T =    r × − ( m  + αα × r + ωω ×(ωω × r )]
                                     *
                                        ∑ i      i  a )[ G  i        i
                                         = i 1
                                           N          N              N
                                                                              [
                                      =− ∑  m ii   a − ∑  m i i  × r ) − ∑ m ii r × ωω ×(ωω × r )]  (6.9.10)
                                                            r ×(αα
                                               r ×
                                                                   i
                                                                                       i
                                                    G
                                          i  =1       = i 1          = i 1
                                                                   N
                                             G ∑
                                      =− ×  a −  N  m i i  × r ) − ωω × ∑ m i i ×  × )
                                                     r ×(αα
                                                                        r ×(ωω r
                                         0
                                                            i
                                                                               i
                                                 = i 1              = i 1
   200   201   202   203   204   205   206   207   208   209   210