Page 252 - Dynamics of Mechanical Systems
P. 252

0593_C07_fm  Page 233  Monday, May 6, 2002  2:42 PM





                       Inertia, Second Moment Vectors, Moments and Products of Inertia, Inertia Dyadics  233


                       4 kg, respectively. Find the following moments and products of inertia of S relative to the
                       origin O of the X-, Y-, Z-axis system of Figure P7.3.3:  I SO ,  I SO ,  I SO ,  I SO ,  I SO , and  I SO .
                                                                        xx   xy  xz  yy   yz      zz















                       FIGURE P7.3.3
                       Particles at the vertices of a triangle.
                       P7.3.4: See Problems P7.2.5, P7.2.8, P7.2.9, and P7.3.3. For the system S shown in Figure
                                                                                              SG
                                                                                          SG
                                                                                  SG
                       P7.3.3,  find the following moments and products of inertia:  I ,  I SG ,  I ,  I ,  I SG ,
                                                                                  xx  xy  xz  yy   yz
                       and I SG  where G is the mass center of S, as determined in Problem P7.2.8. (Compare the
                            zz
                       magnitudes of these results with those of Problem P7.3.3.)
                       P7.3.5: See Problems P7.2.9 and P7.3.3. For the system S shown in Figure P7.3.3, find the
                       following moments and products of inertia:  I GO ,  I GO ,  I GO  I ,  GO  I ,  GO , and  I GO .
                                                                xx  xy   xz  yy  yz       zz
                       P7.3.6: See Problems P7.2.10, P7.3.3, P7.3.4, and P7.3.5. Show that:
                                                                     xyz)
                                                  I SO  =  I SG  +  I GO  ( i j = , ,
                                                                  ,
                                                   ij   ij   ij
                       P7.3.7: See Problems P7.2.5, P7.2.6, P7.2.7, and P7.3.3. As in Problem P7.2.6 let n  and n b
                                                                                               a
                       be the unit vectors:

                                                               .
                                                       .
                                                                     .
                                                  n = 0 75 n − 0 5 n + 0 433 n
                                                   a       x     y        z
                       and
                                                                  .
                                                          .
                                                     n = 0 655 n + 0 756 n
                                                      b        y       z
                       Find  I SO  I ,  SO , and  I SO .
                            aa  ab      bb

                       Section 7.4 Inertia Dyadics

                       P7.4.1: Let vectors a, b, and c be expressed as:

                                                      a = 6 n − 3 n + 4 n  3
                                                           1
                                                                2
                                                      b =−5 n + 4 n − 7 n  3
                                                            1
                                                                 2
                                                      c = 3 n − n + 9 n  3
                                                           1
                                                               2
   247   248   249   250   251   252   253   254   255   256   257