Page 254 - Dynamics of Mechanical Systems
P. 254

0593_C07_fm  Page 235  Monday, May 6, 2002  2:42 PM





                       Inertia, Second Moment Vectors, Moments and Products of Inertia, Inertia Dyadics  235


                       P7.4.7: See Problems P7.2.5 and P7.4.4. Find the second moments of S relative to O for the
                       directions of n , n , and n .
                                              z
                                    x
                                       y
                       P7.4.8: See Problems P7.3.3 and P7.4.4. Find the following moments and products of inertia
                                                      SO
                       of S for O:  I SO ,  I SO ,  I  SO ,  I SO , and  I .
                                  xx  xz  yy  yz      zz
                       P7.4.9: See Problems P7.2.6 and P7.4.4. Let  n  and  n  be unit vectors with coordinates
                                                                       b
                                                                a
                       relative to n , n , and n  as:
                                           z
                                 x
                                    y
                                                  n = 0 75 n − 0 5 n + 0 433 n
                                                       .
                                                                     .
                                                               .
                                                   a       x     y        z
                                                  n = 0 655 n + 0 756 n
                                                       .
                                                                .
                                                   b        y       z
                                                             SO
                       Find the second moment vectors  I SO  and  I .
                                                      a      b
                       P7.4.10: See Problems P7.2.5, P7.2.6, P7.3.7, P7.4.4, and P7.4.9. Let n  and n  be the unit
                                                                                    a
                                                                                           b
                       vectors of Problem P7.4.9. Find the following moments and products of inertia of S relative
                                         SO
                       to O:  I SO  I ,  SO , and  I .
                             aa  ab      bb
                       Section 7.5 Transformation Rules
                       P7.5.1: Let S be a set of eight particles P  (i = 1,…, 8) located at the vertices of a cube as
                                                           i
                       in Figure P7.5.1. Let the masses m  of the P  be as listed in the figure. Determine the second-
                                                           i
                                                    i
                       moment vectors  I SO  I ,  SO , and  I S O  for the directions of the unit vectors n , n , and n  shown
                                      1    2       3                                  1  2     3
                       in Figure P7.5.1.
                                           Z     n
                                                   3
                                                           P
                                          P  4              3              m  = 2 kg,   m  = 4 kg
                                                                            1            5
                                                                           m  = 3 kg,   m  = 6 kg
                                                                            2            6
                                                            2m             m  = 1 kg,   m  = 3 kg
                                                P                           3            7
                                 P               7
                                  8                                        m  = 5 kg,   m  = 2 kg
                                                                            4            8
                                           P               P  2
                                            1
                                                                    Y
                                              O
                                                                   n
                                                       2m           2
                                 P  5
                                                   P
                                          2m        6
                             X       n
                                      1
                       FIGURE P7.5.1
                       Particles at the vertices of a cube.
                       P7.5.2: See Problem P7.5.1. Let n , n , and n  be unit vectors with components relative to
                                                    a
                                                       b
                                                              c
                       n , n , and n  as:
                                  3
                           2
                        1
                                                            .
                                                      .
                                                n = 05 n + 0866 n
                                                  a     1        2
                                                                      .
                                                n =−0 433 n + 0 25 n + 0 866 n
                                                       .
                                                               .
                                                  b        1       2       3
                                                             .
                                                                     .
                                                n = 075 n − 0 433 n + 05 n
                                                     .
                                                  c      1        2     3
   249   250   251   252   253   254   255   256   257   258   259