Page 41 - Dynamics of Mechanical Systems
P. 41

0593_C02_fm  Page 22  Monday, May 6, 2002  1:46 PM





                       22                                                  Dynamics of Mechanical Systems



                                    Z                                            Z
                                                   B
                               n
                                z
                                                                            n               P(x,y,z)
                                                                             z
                                                                                                  C
                             C                       A
                                                                           R
                                                     Y                         O
                                            n                                                    Y
                        n  x                 y
                                                                                             n
                                                                                              y
                                                                       X      n  x
                       X
                       FIGURE 2.4.4                                  FIGURE 2.4.5
                       The system of Figure 2.3.6.                   A particle P moving in a reference frame R.

                        Solution: The line of sight OP may be represented by the position vector p of Figure
                       2.4.5. In terms of unit vectors n , n , and n  parallel to X, Y, and Z, p may be expressed as:
                                                     y
                                                  x
                                                            z
                                             p = x n + y n + z n = 8 n + 12 n + 7 n m          (2.4.16)
                                                  x    y    z    x     y    z
                       Then, the magnitude of p is:

                                                   [  2     2    2 ] 12
                                                                   /
                                                         12
                                                    8
                                                                        .
                                                p = () +() +() 7     = 16 03m                  (2.4.17)
                       Therefore, a unit vector n parallel to p is:
                                              n =  p p = 0 499 n + 0 749 n + 0 437 n           (2.4.18)
                                                                         .
                                                        .
                                                                .
                                                             x       y        z
                       Then, from Eq. (2.4.11), the direction cosines are:
                                           cosθ = 0 .499 , cosθ = 0 .749 , cosθ = 0 .437       (2.4.19)
                                                x            y            z
                       Hence, θ , θ , and θ  are:
                              x
                                 y
                                        z
                                                                            .
                                           θ = 60 6deg    θ = 4154deg    θ = 6411deg           (2.4.20)
                                                 .
                                                              .
                                            x            y             z
                       Observe that the functional representation of the coordinates x, y, and z of P as:
                                                  x = (),    y = (),    z = ()                 (2.4.21)
                                                                       z t
                                                              y t
                                                      x t
                       forms a set of parametric equations defining C.
                        Finally, if a vector V is expressed in the form:

                                                     V = v  n + v  n + v  n                    (2.4.22)
                                                          x  x  y  y  z  z
   36   37   38   39   40   41   42   43   44   45   46