Page 484 - Dynamics of Mechanical Systems
P. 484

0593_C13_fm  Page 465  Monday, May 6, 2002  3:21 PM





                       Introduction to Vibrations                                                  465


                       and

                                                           p =  g l                          (13.10.13)


                       Hence, from Eq. (13.11.2), F(A, ψ) is:

                                                       (
                                                      FA,ψ) =− A sin ψ                       (13.10.14)
                                                                 3
                                                                    3
                       Then, Eqs. (13.10.4) and (13.10.5) become:

                                                              2π                 
                                          dA  =−( g )1 2l  π  g l ∫  − A sin 3  ψ cos ψ ψ
                                                                               d 
                                                                    3
                                                   6
                                           dt                                    
                                                                0
                                                                                             (13.10.15)
                                                 g l  3 sin 4  ψ  2π
                                              =     A        |  = 0
                                                12π      4   0
                       and

                                                                   2 π
                                             dφ  =−( g )(1 2l  π  g l  A) ∫  3  4 ψ dψ
                                             dt      6               A sin
                                                                    0
                                                    g l  A 2   3  sin  2 ψ  sin  4 ψ   π
                                                =−          ψ −      +       |             (13.10.16)
                                                     12 π   8     4      32   0
                                                =−  g l  A 16
                                                         2

                        Upon integration of Eqs. (13.10.15) and (13.10.16) we obtain:

                                                     A =  A  (a constant )                   (13.10.17)
                                                          0

                       and

                                                                   2
                                                    φ =−(116 ) g l  A t + φ 0                (13.10.18)
                                                                   0
                       where φ  is a constant.
                              0
                        Therefore, from Eq. (13.10.6), the approximate solution to Eq. (13.10.8) is:
                                                        {    [        )]    }
                                                θ = A sin  g l  1  −(A 16  t − φ             (13.10.19)
                                                    0              0       0

                        Comparing Eq. (13.10.19) with the linear equation solution, A sinωt, we see that ω is:
                                                                                0
                                                       π
                                                  ω = 2 T  = g l [ 1 −(A 0  16 )]            (13.10.20)
   479   480   481   482   483   484   485   486   487   488   489