Page 488 - Dynamics of Mechanical Systems
P. 488

0593_C13_fm  Page 469  Monday, May 6, 2002  3:21 PM





                       Introduction to Vibrations                                                  469


                       P13.2.12: A damped linear oscillator has a mass of 2 kg. Suppose the displacement x(t) of
                       the oscillator is given by:


                                                                   +
                                                  xt () =  e −15 .  t  ( Acos  4 t Bsin  t 4 )
                       Determine the values of the damping c and spring stiffness k of the oscillator.
                       P13.2.13: See Problem P13.2.8. Find the solution to the following equations if x(0) = 1 and
                       ˙ x (0) = –2.

                          a. 3˙˙ x + 2 ˙ x + 4x =  0
                          b. 4˙˙ xx++ 8x =  0
                                 ˙
                          c. 7 ˙˙ x − 4 ˙ x + 9x =  0

                          d. ˙˙ x + 5  ˙ x + 2 x = 0
                          e. 2˙˙ x + 4 ˙ x + 2x =  0

                       P13.2.14: Find the general solution of the following equations:

                          a. 3˙˙ x + 6x =  7cos  3t
                          b. 4˙˙ x + 7x =  8cos 4t
                          c. 2˙˙ x + 5x =  6sin  2t
                          d. 2˙˙ x + 5x =  6sin 2t +  7cos 3t

                       P13.2.15: See Problem P13.2.14. Find the solution to the following equations if x(0) = –1
                       and  (0) = 2.
                           ˙ x
                          a. 3˙˙ x + 6x =  7cos  3t
                          b. 3˙˙ x + 7x =  8cos  4t
                          c. 2˙˙ x + 5x =  6sin  2t
                          d. 2˙˙ x + 5x =  6sin 2t +  7cos 3t

                       P13.2.16: Find the general solution of the following equations:

                          a. 3˙˙ x + 2 ˙ x + 6x =  7cos 3t
                          b. 4˙˙ x + 3 ˙ x + 7x =  8cos  4t
                          c. 2˙˙ xx++ 5x =  6sin 2t
                                 ˙
                          d. 2˙˙ xx++ 5x =  6sin 2t +  7cos 3t
                                 ˙
                       P13.2.17: See Problem P13.2.16. Find the solution to the following equations if  (0) = –1
                                                                                              ˙ x
                       and x(0) = 2.
                          a. 3˙˙ x + 2 ˙ x + 6x =  7cos 3t
                          b. 4˙˙ x + 3 ˙ x + 7x =  8cos  4t
                          c. 2˙˙ xx++ 5x =  6sin 2t
                                 ˙
                          d. 2˙˙ xx++ 5x =  6sin 2t +  7cos 3t
                                 ˙
   483   484   485   486   487   488   489   490   491   492   493