Page 73 - Dynamics of Mechanical Systems
P. 73

0593_C02_fm  Page 54  Monday, May 6, 2002  1:46 PM





                       54                                                  Dynamics of Mechanical Systems


                          c. Let unit vector n  be expressed in terms of n , n , and n  as:
                                                                               z
                                                                     x
                                                                       y
                                            a
                                                     n =  a  n +  a  n +  a  n
                                                      a   x  x  y  y  z  z
                             show that I  may then be expressed as:
                                       a
                                                      I =  a  I +  a  I +  a  I
                                                       a  x x   y y  z z


                       Section 2.9 Use of the Index Summation Convention
                       P2.9.1: Evaluate and/or expand the following terms:

                          a. δ kk
                          b. e δ
                             ijk jk
                          c. a b
                             ij jk


                       Section 2.10 Review of Matrix Procedures
                       P2.10.1: Given the matrices A, B, and C:


                                         1  −2     4   4   8    −  3   7   −1  −  7
                                                                                  
                                     A = 5    8   3     B = 5  −6  9    C = 3   6    8  
                                         
                                                   
                                                         
                                                                     
                                                                           
                                         7  −6     9    0  5  2      4  −2  9   
                                         
                          a. Compute the products AB and BC.
                          b. Compute the products (AB)C and  A(BC) and compare the results (see Eq.
                             (2.8.10)).
                                                          T
                                                        T
                                      T
                                   T
                          c. Find B , A , and the product B A .
                                                           T
                                                         T
                          d. Find (AB)  and compare with B A  (see Eq. (2.10.9)).
                                     T
                                  ˆ
                          e. Find  A , the matrix of adjoints for A (see Eq. (2.10.11)).
                          f. Compute A .
                                       –1
                                                             –1
                                                   –1
                          g. Compute the products A A and AA .
                       P2.10.2: Given the matrix S (an orthogonal matrix):
                                                     12        6 4    6    4
                                                                          
                                                    
                                                 S =− 3 2       24     24  
                                                                          
                                                      0      − 2 2     2 2 
                          a. Find detS.
                                  –1
                          b. Find S .
                                  T
                          c. Find S .
                                      –1
                                             T
                          d. Compare S  and S .
   68   69   70   71   72   73   74   75   76   77   78