Page 149 - Electromagnetics
P. 149

To determine A and B we impose (3.36)and (3.37). By (3.36)we have


                                  1     ∞     ρ(r ) e −k ρ z  − jk ρ ·r          jk ρ ·r  2

                                                      e     dV + B(k ρ ) − A(k ρ ) e  d k ρ = 0,

                                (2π) 2     V  	 1  2k ρ
                                      −∞
                        hence
                                             ρ(r ) e   − jk ρ ·r
                                                   −k ρ z
                                                      e     dV + B(k ρ ) − A(k ρ ) = 0

                                           V  	 1  2k ρ
                        by the Fourier integral theorem. Applying (3.37)at z = 0 with ˆ n 12 = ˆ z, and noting that
                        there is no excess surface charge, we find
                                               e     − jk ρ ·r
                                                −k ρ z


                                           ρ(r )    e     dV − 	 1 B(k ρ ) − 	 2 A(k ρ ) = 0.
                                          V     2k ρ
                        The solutions
                                                                   −k ρ z
                                                     2	 1    ρ(r ) e   − jk ρ ·r

                                            A(k ρ ) =                 e     dV ,
                                                    	 1 + 	 2  V  	 1  2k ρ
                                                                   −k ρ z
                                                    	 1 − 	 2  ρ(r ) e  − jk ρ ·r

                                            B(k ρ ) =                 e     dV ,
                                                    	 1 + 	 2  V  	 1  2k ρ
                        are then substituted into (3.81)and (3.82)to give

                                                                 e
                                                  ∞  e −k ρ |z−z |  	 1 −	 2 −k ρ (z+z )
                                            1              +              jk ρ ·(r−r )  2  ρ(r )

                                 1 (r) =      2              	 1 +	 2   e       d k ρ     dV
                                       V  (2π)  −∞          2k ρ                       	 1

                                                ρ(r )


                                    =    G 1 (r|r )  dV ,
                                       V         	 1


                                            1        2	 2  e      jk ρ ·(r−r )  2  ρ(r )
                                                  ∞        −k ρ (z −z)

                                 2 (r) =      2                  e       d k ρ     dV
                                       V  (2π)  −∞ 	 1 + 	 2  2k ρ              	 2
                                                ρ(r )



                                    =    G 2 (r|r )  dV .
                                       V         	 2
                        Since z > z for all points in region 2, we can replace z − z by |z − z | in the formula for



                          2 .
                          As with the previous example, let us compare the result to the form of the primary
                        Green’s function (3.77). We see that
                                                         1      	 1 − 	 2  1

                                            G 1 (r|r ) =      +                 ,


                                                     4π|r − r |  	 1 + 	 2 4π|r − r |
                                                                              1
                                                       2	 2    1

                                            G 2 (r|r ) =            ,

                                                     	 1 + 	 2 4π|r − r |
                                                                   2




                        where r = ˆ xx + ˆ yy − ˆ zz and r = ˆ xx + ˆ yy + ˆ zz . So we can also write




                              1                     2

                                               1        1     	 1 − 	 2  1  	  ρ(r )

                                         1 (r) =            +                    dV ,

                                               4π  V  |r − r |  	 1 + 	 2 |r − r |  	 1

                                                                         1
                                               1       2	 2   1   	  ρ(r )


                                         2 (r) =                        dV .

                                               4π  V  	 1 + 	 2 |r − r |  	 2
                                                                2
                        © 2001 by CRC Press LLC
   144   145   146   147   148   149   150   151   152   153   154