Page 172 - Electromagnetics
P. 172

ˆ
                        Because φ =−ˆ x cos φ + ˆ y sin φ we find that

                                              µIa      2π         cos φ
                                                  ˆ

                                       A(r) =     φ                            1/2  dφ .
                                               4π    0    ρ + a + z − 2aρ cos φ
                                                          2
                                                                  2
                                                              2
                        We put the integral into standard form by setting φ = π − 2x:

                                                                        2
                                           µIa      π/2          1 − 2 sin x
                                                ˆ
                                   A(r) =−     φ                                     2 dx.
                                            4π    −π/2 ρ + a + z + 2aρ(1 − 2 sin x)   1/2
                                                                               2

                                                        2
                                                            2
                                                                2
                        Letting
                                                    4aρ
                                            2                     2        2    2
                                           k =             ,    F = (a + ρ) + z ,
                                                      2
                                                (a + ρ) + z 2
                        we have
                                                                         2
                                                   µIa   4     π/2  1 − 2 sin x
                                                        ˆ
                                           A(r) =−     φ                2     dx.
                                                                     2
                                                    4π   F  0   [1 − k sin x] 1/2
                        Then, since
                                           2
                                                    2
                                    1 − 2 sin x    k − 2      2  2  −1/2  2      2  2  1/2
                                                 =      [1 − k sin x]   +   [1 − k sin x]  ,
                                           2
                                       2
                                  [1 − k sin x] 1/2  k 2                  k 2
                        we have
                                                  µI    a      1  2     2     2
                                                 ˆ
                                          A(r) = φ         1 − k    K(k ) − E(k ) .           (3.138)
                                                  πk   ρ       2
                        Here
                                          π/2                            π/2

                                    2             du               2            2   2  1/2
                                K(k ) =           2  2  1/2 ,   E(k ) =    [1 − k sin u]  du,
                                         0   [1 − k sin u]              0
                        are complete elliptic integrals of the first and second kinds, respectively.
                                                                                    2
                                   2
                                                                                                  2
                                                                                         2
                                                                                             2
                          We have k 	 1 when the observation point is far from the loop (r = ρ + z   a ).
                        Using the expansions [47]
                                     π     1      9       	             π      1     3
                                2             2     4               2            2      4
                             K(k ) =    1 + k +    k +· · · ,   E(k ) =    1 − k −     k − ··· ,
                                     2     4     64                     2      4    64
                        in (3.138)and keeping the first nonzero term, we find that
                                                            µI     2
                                                          ˆ
                                                   A(r) ≈ φ     (πa ) sin θ.                  (3.139)
                                                           4πr 2
                        Defining the magnetic dipole moment of the loop as
                                                                  2
                                                         m = ˆ zIπa ,
                        we can write (3.139)as
                                                              µ m × ˆ r
                                                      A(r) =         .                        (3.140)
                                                             4π   r 2
                        Generalization to an arbitrarily-oriented circular loop with center located at r 0 is accom-
                        plished by writing m = ˆ nIA where A is the loop area and ˆ n is normal to the loop in the
                        right-hand sense. Then
                                                           µ      r − r 0
                                                   A(r) =    m ×        .
                                                          4π     |r − r 0 | 3
                        © 2001 by CRC Press LLC
   167   168   169   170   171   172   173   174   175   176   177