Page 246 - Electromagnetics
P. 246

initial intention of having only a single elemental function present. The sifting property
                        gives

                                                               e
                                                 e j ˇωt jξ(r)  + e − j ˇωt − jξ(r)
                                                    e
                                    ψ(r, t) = ψ 0 (r)                = ψ 0 (r) cos[ ˇωt + ξ(r)]
                                                          2
                        as expected.
                        4.7.1   The time-harmonic EM fields and constitutive relations

                          The time-harmonic fields are described using the representation (4.121) for each field
                        component. The electric field is

                                                        3
                                                          ˆ               E

                                              E(r, t) =   i i |E i (r)| cos[ ˇωt + ξ (r)]
                                                                         i
                                                       i=1
                        for example. Here |E i | is the complex magnitude of the ith vector component, and ξ E  is
                                                                                                 i
                                              E
                        the phase angle (−π< ξ ≤ π). Similar terminology is used for the remaining fields.
                                             i
                          The frequency-domain constitutive relations (4.11)–(4.15) may be written for the time-
                        harmonic fields by employing (4.124). For instance, for an isotropic material where
                                                                               ˜
                                       ˜
                                                     ˜
                                                                ˜
                                      D(r,ω) = ˜ (r,ω)E(r,ω),   B(r,ω) = ˜µ(r,ω)H(r,ω),
                        with

                                                                                 µ
                                      ˜  (r,ω) =|˜ (r,ω)|e ξ (r,ω) ,  ˜ µ(r,ω) =| ˜µ(r,ω)|e ξ (r,ω) ,
                        we can write
                                     3
                                   
                   D
                                       ˆ
                           D(r, t) =   i i |D i (r)| cos[ ˇωt + ξ (r)]
                                                      i
                                    i=1
                                            3
                                    1    ∞ 
                   jξ (r)        − jξ (r)        jωt

                                                                                E
                                                               E
                                 =            ˆ i i ˜ (r,ω)|E i (r)|π e  i  δ(ω − ˇω) + e  i  δ(ω + ˇω) e  dω
                                    2π
                                        −∞  i=1
                                      3
                                    1  
                    E                    E
                                                            i
                                                                                i
                                 =      ˆ i i |E i (r)| ˜ (r, ˇω)e  j( ˇωt+ jξ (r))  + ˜ (r, − ˇω)e  − j( ˇωt+ jξ (r))  .
                                    2
                                      i=1
                        Since (4.25) shows that ˜ (r, − ˇω) = ˜  (r, ˇω), we have
                                                        ∗
                                         3
                                       1  
                 j( ˇωt+ jξ (r)+ jξ (r, ˇω))  − j( ˇωt+ jξ (r)+ jξ (r, ˇω))
                                                                E
                                                                                    E


                              D(r, t) =    ˆ i i |E i (r)||˜ (r, ˇω)| e  i  + e    i
                                       2
                                        i=1
                                       3
                                      
                         E
                                         ˆ
                                    =    i i |˜ (r, ˇω)||E i (r)| cos[ ˇωt + ξ (r) + ξ (r, ˇω)].  (4.125)
                                                                i
                                       i=1
                        Similarly
                                               3
                                                 ˆ
                                              
                  B
                                      B(r, t) =  i i |B i (r)| cos[ ˇωt + ξ (r)]
                                                                 i
                                              i=1
                                               3
                                                 ˆ                      H       µ

                                            =    i i | ˜µ(r, ˇω)||H i (r)| cos[ ˇωt + ξ (r) + ξ (r, ˇω)].
                                                                        i
                                              i=1
                        © 2001 by CRC Press LLC
   241   242   243   244   245   246   247   248   249   250   251