Page 251 - Electromagnetics
P. 251

have, substituting the field expressions,

                                           3                         3
                                      1   
    i     J E        1   
    c     J E

                                                                                c
                                                      i
                                    −        |J ||E i |C ii  (t) dV =  |J ||E i |C  ii  (t) dV +
                                               i
                                                                         i
                                      2  V  i=1                 2  V  i=1
                                            3  "                              #
                                      ∂    
   1         DE     1        BH

                                    +            |D i ||E i |C ii  (t) + |B i ||H i |C ii  (t) dV +
                                      ∂t  V  i=1  4             4
                                           3
                                      1   
                    EH

                                                     ˆ
                                                         ˆ
                                    +         |E i ||H j |(i i × i j ) · ˆ nC ij  (t) dS.     (4.143)
                                      2  S  i, j=1
                                                                          c
                        Here we remember that the conductivity relating E to J must also be nondispersive.
                        Note that the electric and magnetic energy densities w e (r, t) and w m (r, t) have the time-
                        average values  w e (r, t)  and  w m (r, t)  given by
                                                                        3
                                           1     T/2  1              1  
            E    D
                                 w e (r, t) =       E(r, t) · D(r, t) dt =  |E i ||D i | cos(ξ − ξ )
                                                                                     i
                                                                                          i
                                           T  −T/2 2                 4  i=1
                                           1
                                                 ˇ
                                                      ˇ ∗
                                         =   Re E(r) · D (r)                                  (4.144)
                                           4
                        and
                                                                        3
                                            1     T/2  1             1  
            H    B
                                 w m (r, t) =       B(r, t) · H(r, t) dt =  |B i ||H i | cos(ξ i  − ξ )
                                                                                          i
                                           T  −T/2 2                 4  i=1
                                           1
                                                 ˇ
                                                      ˇ ∗
                                         =   Re H(r) · B (r) ,                                (4.145)
                                           4
                        where T = 2π/ ˇω. We have already identified the energy stored in a nondispersive material
                                                                               ˇ
                                                                          ˇ
                                                                                              E
                                                                                                   D
                        (§ 4.5.2). If (4.144) is to match with (4.62), the phases of E and D must match: ξ = ξ .
                                                                                             i    i
                                               B
                        We must also have ξ  H  = ξ . Since in a dispersionless material σ must be independent
                                          i    i                c
                                              ˇ
                                                                     E
                                        ˇ c
                        of frequency, from J = σE we also see that ξ  J  = ξ .
                                                               i     i
                          Upon differentiation the time-average stored energy terms in (4.143) disappear, giving
                                           3                         3
                                      1   
    i     J E        1   
    c     EE

                                                      i
                                    −        |J ||E i |C ii  (t) dV =  |J ||E i |C ii  (t) dV −
                                                                         i
                                               i
                                      2  V  i=1                 2  V  i=1
                                            3  "                             #
                                           
    1        EE     1        BB
                                    −2 ˇω        |D i ||E i |S ii  (t) + |B i ||H i |S ii  (t) dV +
                                          V  i=1  4             4
                                           3
                                      1     
                  EH
                                                         ˆ
                                                     ˆ
                                    +         |E i ||H j |(i i × i j ) · ˆ nC ij  (t) dS.
                                      2  S  i, j=1
                        Equating the constant terms, we find the time-average power balance expression
                                            3                              3

                                      1    
    i        J  i  E      1   
    c
                                     −        |J ||E i | cos(ξ i  − ξ ) dV =  |J ||E i | dV +
                                               i
                                                                              i
                                                             i
                                      2  V  i=1                       2  V  i=1
                                            3
                                      1     
                      E   H
                                                     ˆ
                                                         ˆ
                                     +        |E i ||H j |(i i × i j ) · ˆ n cos(ξ − ξ ) dS.  (4.146)
                                                                  i
                                                                       j
                                      2  S  i, j=1
                        © 2001 by CRC Press LLC
   246   247   248   249   250   251   252   253   254   255   256