Page 354 - Electromagnetics
P. 354

parameters to describe the cascaded system of two layers:
                                              (n)  (n)      (n+1)  (n+1)
                                            T   T     T     T
                                             11  12    11    12     a n+2  =  a n  .
                                            T  (n)  T  (n)  T  (n+1)  T  (n+1)  b n+2  b n
                                             21  22    21    22
                        Since for a periodic layered medium the wave amplitudes should obey (4.422), we have

                                              T 11 T 12  a n+2  a n    jκL a n+2
                                                            =       = e                       (4.424)
                                              T 21 T 22  b n+2  b n        b n+2
                        where L =   n +   n+1 is the period of the structure and
                                                          (n)  (n)      (n+1)  (n+1)
                                                         T   T     T     T
                                             T 11 T 12    11  12    11    12
                                                     =    (n)  (n)  (n+1)  (n+1)  .
                                             T 21 T 22   T   T     T     T
                                                          21  22    21    22
                        Equation (4.424) is an eigenvalue equation for κ and can be rewritten as
                                                    jκL
                                              T 11 − e    T 12     a n+2  =  0  .
                                                 T 21  T 22 − e  jκL  b n+2  0
                        This equation only has solutions when the determinant of the matrix vanishes. Expansion
                        of the determinant gives

                                           T 11 T 22 − T 12 T 21 − e  jκL (T 11 + T 22 ) + e  j2κL  = 0.  (4.425)
                        The first two terms are merely
                                                                  (n)  (n)       (n+1)  (n+1)
                                                      T 11 T 12    11  12     11  12
                                                                  T  T      T   T
                                      T 11 T 22 − T 12 T 21 =        =  (n)  (n+1)      .
                                                      T 21 T 22  T  T     T     T
                                                                      (n)        (n+1)
                                                                 21  22    21    22
                        Since we can show that
                                                         (n)  (n)
                                                       T   T      Z n−1

                                                        11  12    =   ,
                                                       T   T       Z n
                                                         (n)  (n)
                                                        21  22
                        we have
                                                                Z n−1 Z n
                                                T 11 T 22 − T 12 T 21 =  = 1
                                                                 Z n Z n+1
                        where we have used Z n−1 = Z n+1 because of the periodicity of the medium. With this,
                        (4.425) becomes
                                                              T 11 + T 22
                                                      cos κL =        .
                                                                 2
                        Finally, computing the matrix product and simplifying to find T 11 + T 22 , we have

                                       cos κL = cos(k z,n   n ) cos(k k,n−1   n−1 ) −
                                               1     Z n−1  Z n
                                             −         +       sin(k z,n   n ) sin(k z,n−1   n−1 )  (4.426)
                                               2   Z n   Z n−1
                        or equivalently
                                                1 (Z n−1 + Z n ) 2
                                        cos κL =             cos(k z,n   n + k z,n−1   n−1 ) −
                                                4   Z n Z n−1
                                                1 (Z n−1 − Z n ) 2
                                              −              cos(k z,n   n − k z,n−1   n−1 ).  (4.427)
                                                4   Z n Z n−1



                        © 2001 by CRC Press LLC
   349   350   351   352   353   354   355   356   357   358   359