Page 391 - Electromagnetics
P. 391

Nowwe are ready to give a longitudinal–transverse decomposition of the fields in a
                        lossy, homogeneous, isotropic region in terms of the direction ˆ u. We write Maxwell’s
                        equations as
                                                         ˜
                                                                   ˜
                                                ˜
                                                                              ˜ i
                                           ∇× E =− jω ˜µH t − jω ˜µˆ uH u − J ˜ i  − ˆ uJ ,   (5.103)
                                                                        mt    mu
                                                                           ˜ i
                                                       c ˜
                                               ˜
                                                                      ˜ i
                                                               c ˜
                                           ∇× H = jω˜  E t + jω˜  ˆ uE u + J + ˆ uJ ,         (5.104)
                                                                       t    u
                        where we have split the right-hand sides into longitudinal and transverse parts. Then,
                        using (5.99) and (5.100), we can equate the transverse and longitudinal parts of each
                        equation to obtain
                                                             ˜
                                                                        ˜
                                                                              ˜ i
                                                        ∇ t × E t =− jω ˜µˆ uH u − ˆ uJ ,     (5.105)
                                                                               mu
                                                             ˜
                                                   ˜       ∂E t        ˜   ˜ i
                                           − ˆ u ×∇ t E u + ˆ u ×  =− jω ˜µH t − J ,          (5.106)
                                                                            mt
                                                            ∂u
                                                                     c ˜
                                                             ˜
                                                                             ˜ i
                                                        ∇ t × H t = jω˜  ˆ uE u + ˆ uJ ,      (5.107)
                                                                             u
                                                             ˜
                                                   ˜       ∂H t      c ˜  ˜ i
                                           − ˆ u ×∇ t H u + ˆ u ×  = jω˜  E t + J .           (5.108)
                                                                           t
                                                            ∂u
                        We shall isolate the transverse fields in terms of the longitudinal fields. Forming the
                        cross product of ˆ u and the partial derivative of (5.108) with respect to u, we have
                                                ˜            2 ˜             ˜        ˜ i
                                               ∂ H u        ∂ H t      c   ∂E t      ∂J t
                                    −ˆ u × ˆ u ×∇ t  + ˆ u × ˆ u ×  2  = jω˜  ˆ u ×  + ˆ u ×  .
                                                ∂u           ∂u             ∂u       ∂u
                        Using (B.7) and (B.80) we find that
                                                ˜     2 ˜                     ˜ i
                                              ∂ H u  ∂ H t     c   ∂E t      ∂J t
                                            ∇ t   −    2  = jω˜  ˆ u ×  + ˆ u ×  .            (5.109)
                                               ∂u    ∂u             ∂u       ∂u
                                                c
                        Multiplying (5.106) by jω˜  we have
                                                                ˜
                                            c             c    ∂E t   2  c ˜      c ˜ i
                                                   ˜
                                       − jω˜  ˆ u ×∇ t E u + jω˜  ˆ u ×  = ω ˜µ˜  H t − jω˜  J .  (5.110)
                                                                                    mt
                                                               ∂u
                                                                ˜
                        We nowadd (5.109) to (5.110) and eliminate E t to get
                                
  2               ˜                                ˜ i
                                  ∂     2        ∂ H u     c              c ˜ i    ∂J t
                                           ˜
                                                                  ˜
                                     + k  H t =∇ t    − jω˜  ˆ u ×∇ t E u + jω˜  J mt  − ˆ u ×  .  (5.111)
                                 ∂u 2             ∂u                               ∂u
                        This one-dimensional Helmholtz equation can be solved to find the transverse magnetic
                                                                   ˜
                                                             ˜
                        field from the longitudinal components of E and H. Similar steps lead to a formula for
                                                 ˜
                        the transverse component of E:
                                
  2               ˜                       ˜ i
                                  ∂     2         ∂E u                    ∂J mt
                                           ˜
                                                                                    ˜ i
                                                                  ˜
                                     + k   E t =∇ t   + jω ˜µˆ u ×∇ t H u + ˆ u ×  + jω ˜µJ .  (5.112)
                                                                                     t
                                  ∂u 2            ∂u                       ∂u
                                                                                        ˜
                                                                                  ˜
                          We find the longitudinal components from the wave equation for E and H. Recall that
                        the fields satisfy
                                                         1
                                                                             ˜ i
                                                                     ˜ i
                                               2   2 ˜        i
                                             (∇ + k )E =   ∇ ˜ρ + jω ˜µJ +∇ × J ,
                                                                              m
                                                         ˜   c
                                                         1
                                               2   2 ˜       i      c ˜ i
                                                                              ˜ i
                                            (∇ + k )H =    ∇ ˜ρ + jω˜  J −∇ × J .
                                                                      m
                                                             m
                                                         ˜ µ
                        © 2001 by CRC Press LLC
   386   387   388   389   390   391   392   393   394   395   396