Page 431 - Electromagnetics
P. 431

We assume a lossless medium with parameters µ,  . Substituting the current expression
                        into (6.15) and integrating over x and y we find that

                                                       µI ˜     l       e − jkR
                                             ˜

                                            A e (r,ω) = ˆ z  sin k(l −|z |)  dz                (6.27)
                                                       4π  −l             R
                                          2   2      2   2   2
                        where R =  (z − z ) + ρ and ρ = x + y . Using (6.16) we have
                                                                       ˜
                                                          1         1 ∂ A ez
                                                  ˜         ˜      ˆ
                                                  H =∇ ×    A e =−φ       .
                                                          µ         µ ∂ρ
                        Writing the sine function in (6.27) in terms of exponentials, we then have


                                         ˜ I       0  ∂ e − jk(R−z )       0  ∂ e − jk(R+z )
                                  ˜
                                  H φ = j    e  jkl           dz − e − jkl            dz +


                                        8π       −l ∂ρ   R              −l ∂ρ    R

                                             l                      l
                                              ∂ e − jk(R+z )          ∂ e  − jk(R−z )
                                     + e jkl             dz − e − jkl           dz     .

                                            0 ∂ρ    R              0 ∂ρ    R
                        Noting that


                                    ∂ e − jk(R±z )  ∂    e − jk(R±z )     1 + jkR  − jk(R±z )

                                               =±ρ                   =−ρ         e
                                    ∂ρ   R          ∂z R [R ∓ (z − z )]     R 3


                        we can write
                                                                 0                      0
                                         ˜
                                         Iρ     jkl  e  − jk(R−z )     − jkl  e − jk(R+z )
                                   ˜
                                  H φ = j    −e                   − e                    +
                                         8π       R [R + (z − z )]      R [R − (z − z )]


                                                                −l                    −l
                                              e − jk(R+z )        l  − jkl  e − jk(R−z )        l
                                         jkl
                                     + e                   + e                   .
                                           R [R − (z − z )]      R [R + (z − z )]


                                                         0                     0
                        Collecting terms and simplifying we get
                                                   ˜ I(ω)
                                         ˜
                                        H φ (r,ω) = j   e − jkR 1  + e − jkR 2  − (2 cos kl)e − jkr  (6.28)
                                                   4πρ

                                      2       2             2        2
                        where R 1 =  ρ + (z − l) and R 2 =  ρ + (z + l) . For points external to the dipole
                        the source current is zero and thus
                                         1                1  
   ∂            1 ∂
                               ˜                ˜                  ˜                ˜
                               E(r,ω) =    ∇× H(r,ω) =        −ˆρ  H φ (r,ω) + ˆ z  [ρH φ (r,ω)] .
                                        jω               jω      ∂z           ρ ∂ρ
                        Performing the derivatives we have
                                             ˜

                                            ηI(ω) z − l e − jkR 1  z + l e − jkR 2  z  e − jkr
                                 ˜
                                 E ρ (r,ω) = j               +           −   (2 cos kl)    ,   (6.29)
                                             4π     ρ    R 1    ρ    R 2    ρ         r
                                              ˜

                                             ηI(ω) e − jkR 1  e − jkR 2     e − jkr
                                 ˜
                                 E z (r,ω) =− j           +       − (2 cos kl)    .            (6.30)
                                               4π     R 1     R 2            r
                          The work of specializing these expressions for points in the far zone is left as an exercise.
                        Instead, we shall use the general far-zone expressions (6.21)–(6.24). Substituting (6.26)
                        © 2001 by CRC Press LLC
   426   427   428   429   430   431   432   433   434   435   436