Page 509 - Electromagnetics
P. 509

converges, and the constants are
                                                      2        a          ρ
                                            C m =   2           f (ρ)J ν p νm  ρ dρ
                                                  2
                                                 a J   (p νm )  0         a
                                                    ν+1
                        by (A.136). Here p νm is the mth root of J ν (x). An alternative form of the series uses

                        p , the roots of J (x), and is given by

                         νm
                                        ν
                                                ∞

                                                	           ρ

                                         f (ρ) =   D m J ν p νm  ,  0 ≤ ρ ≤ a,ν > −1.
                                                m=1         a
                        In this case the expansion coefficients are found using the orthogonality relationship
                                           p         p              a       ν
                                       a                             2       2
                                            νm        νn                          2
                                       J ν    ρ J ν     ρ ρ dρ = δ mn   1 −   2  J (p ),
                                                                                     νm
                                                                                  ν
                                     0      a         a              2      p νm
                        and are
                                                     2            a        p   νm
                                        D m =                      f (ρ)J ν  ρ ρ dρ.
                                                     2
                                                        2
                                             a 2  1 −  ν  2 J (p )  0      a

                                                        ν
                                                           νm
                                                    p νm
                        Solutions in spherical coordinates.  If into Helmholtz’s equation
                                     1 ∂     2  ∂ψ(r,θ,φ)     1  ∂       ∂ψ(r,θ,φ)
                                           r            +            sin θ          +
                                      2
                                                            2
                                     r ∂r        ∂r        r sin θ ∂θ       ∂θ
                                                             2
                                                        1   ∂ ψ(r,θ,φ)    2
                                                   +                   + k ψ(r,θ,φ) = 0
                                                         2
                                                      2
                                                     r sin θ   ∂φ 2
                                                                            2
                                                                                2
                        we put ψ(r,θ,φ) = R(r)%(θ)#(φ) and multiply through by r sin θ/ψ(r,θ,φ), we obtain
                               2
                                                                                          2
                             sin θ d     2  dR(r)     sin θ d     d%(θ)     2 2  2    1  d #(φ)
                                      r        +          sin θ      + k r sin θ =−            .
                             R(r) dr     dr      %(θ) dθ       dθ                   #(φ)  dφ 2
                        Since the right side depends only on φ while the left side depends only on r and θ, both
                                                     2
                        sides must equal some constant µ :
                                 2
                               sin θ d     2 dR(r)     sin θ d     d%(θ)     2 2  2   2
                                        r        +          sin θ      + k r sin θ = µ ,      (A.137)
                               R(r) dr     dr      %(θ) dθ       dθ
                                                     2
                                                    d #(φ)     2
                                                           + µ #(φ) = 0.                      (A.138)
                                                      dφ 2
                        We have thus separated off the φ-dependence. Harmonic ordinary differential equation
                        (A.138) has solutions

                                                     A φ sin µφ + B φ cos µφ,  µ  = 0,
                                            #(φ) =
                                                     a φ φ + b φ ,        µ = 0.
                        (We could have used complex exponentials to describe #(φ), or some combination of
                        exponentials and trigonometric functions, but it is conventional to use only trigonometric
                                                                             2
                        functions.) Rearranging (A.137) and dividing through by sin θ we have
                                  1   d     2 dR(r)     2 2     1    d       d%(θ)     µ 2
                                         r        + k r =−               sin θ      +      .
                                                                                         2
                                 R(r) dr     dr             sin θ%(θ) dθ      dθ      sin θ
                        © 2001 by CRC Press LLC
   504   505   506   507   508   509   510   511   512   513   514