Page 512 - Electromagnetics
P. 512

These can be written as finite sums involving trigonometric functions and inverse powers
                        of z. We have, for instance,

                                                           sin z
                                                     j 0 (z) =  ,
                                                             z
                                                             cos z
                                                    n 0 (z) =−   ,
                                                              z
                                                           sin z  cos z
                                                     j 1 (z) =  −     ,
                                                            z 2    z
                                                             cos z  sin z
                                                    n 1 (z) =−   −      .
                                                              z 2    z
                          We can now write R(r) as a linear combination of any two of the spherical Bessel
                                           (2)
                                       (1)
                        functions j n , n n , h , h :
                                       n
                                           n
                                                     
                                                     A r j n (kr) + B r n n (kr),
                                                     
                                                                   (1)
                                                     A r j n (kr) + B r h (kr),
                                                     
                                                     
                                                                    n
                                                     
                                                     
                                                       A r j n (kr) + B r h (kr),
                                                                   (2)
                                                                    n
                                               R(r) =                                         (A.145)
                                                                    (1)
                                                     A r n n (kr) + B r h (kr),
                                                                    n
                                                     
                                                                   (2)
                                                     
                                                     A r n n (kr) + B r h (kr),
                                                     
                                                                   n
                                                     
                                                       A r h (kr) + B r h (kr).
                                                         (1)        (2)
                                                          n          n
                        Imaginary arguments produce modified spherical Bessel functions; the interested reader
                        is referred to Gradsteyn [76] or Abramowitz [1].
                        Examples.   The problem
                                     2
                                    ∇ V (r,θ,φ) = 0,  θ 0 ≤ θ ≤ π/2, 0 ≤ r < ∞, −π ≤ φ ≤ π,
                                      V (r,θ 0 ,φ) = V 0 ,  −π ≤ φ ≤ π, 0 ≤ r < ∞,
                                    V (r,π/2,φ) = 0,  −π ≤ φ ≤ π, 0 ≤ r < ∞,
                        gives the potential field between a cone and the z = 0 plane. Azimuthal symmetry
                        prompts us to choose µ = a φ = 0. Since k = 0 we have
                                                             n
                                                    R(r) = A r r + B r r −(n+1) .             (A.146)
                        Noting that positive and negative powers of r are unbounded for large and small r,
                        respectively, we take n = B r = 0. Hence the solution depends only on θ:
                                                               0            0
                                          V (r,θ,φ) = V (θ) = A θ P (cos θ) + B θ Q (cos θ).
                                                               0            0
                                        0
                        We must retain Q since the solution region does not contain the z-axis. Using
                                        0
                                             0
                                                               0
                                           P (cos θ) = 1  and  Q (cos θ) = ln cot(θ/2)
                                            0                  0
                        (cf., Appendix E.2), we have
                                                  V (θ) = A θ + B θ ln cot(θ/2).
                        A straightforward application of the boundary conditions gives A θ = 0 and B θ =
                        V 0 / ln cot(θ 0 /2), hence
                                                              ln cot(θ/2)
                                                     V (θ) = V 0       .
                                                              ln cot(θ 0 /2)
                        © 2001 by CRC Press LLC
   507   508   509   510   511   512   513   514   515   516   517