Page 53 - Electromagnetics
P. 53

y = y,                                     (2.74)


                                                    z = z,                                     (2.75)
                                                               v

                                                   ct = γ ct − γ x,                            (2.76)
                                                               c
                        and the chain rule gives
                                                     ∂      ∂     v ∂
                                                        = γ    − γ     ,                       (2.77)
                                                                   2
                                                     ∂x    ∂x  	  c ∂t
                                                     ∂     ∂
                                                        =    ,                                 (2.78)
                                                     ∂y   ∂y
                                                     ∂     ∂
                                                        =    ,                                 (2.79)
                                                     ∂z   ∂z
                                                     ∂         ∂     ∂
                                                        =−γv     + γ   .                       (2.80)
                                                     ∂t       ∂x  	  ∂t
                        We begin by examining Faraday’s law in the laboratory frame. In component form we
                        have
                                                     ∂E z  ∂E y    ∂ B x
                                                         −     =−      ,                       (2.81)
                                                     ∂y     ∂z      ∂t
                                                     ∂E x  ∂E z    ∂ B y
                                                         −     =−      ,                       (2.82)
                                                      ∂z    ∂x      ∂t
                                                     ∂E y  ∂E x    ∂ B z
                                                         −     =−      .                       (2.83)
                                                     ∂x     ∂y      ∂t
                        These become
                                                      ∂E z  ∂E y     ∂ B x   ∂ B x
                                                          −      = γv    − γ    ,              (2.84)
                                                       ∂y 	  ∂z 	     ∂x 	   ∂t
                                           ∂E x    ∂E z    v ∂E z    ∂ B y   ∂ B y
                                               − γ     + γ       = γv    − γ    ,              (2.85)
                                                           2
                                            ∂z 	   ∂x  	  c ∂t  	     ∂x 	   ∂t
                                            ∂E y    v ∂E y  ∂E x     ∂ B z   ∂ B z
                                           γ    − γ       −      = γv    − γ    ,              (2.86)
                                                     2
                                             ∂x  	  c ∂t  	  ∂y 	     ∂x  	  ∂t
                        after we use (2.77)–(2.80) to convert the derivatives in the laboratory frame to derivatives
                        with respect to the moving frame coordinates. To simplify (2.84) we consider
                                                        ∂ B x  ∂ B y  ∂ B z
                                                ∇· B =      +     +     = 0.
                                                        ∂x    ∂y     ∂z
                        Converting the laboratory frame coordinates to the moving frame coordinates, we have
                                                ∂ B x   v ∂ B x  ∂ B y  ∂ B z
                                               γ    − γ       +     +     = 0
                                                         2
                                                 ∂x  	  c ∂t 	   ∂y 	  ∂z
                        or
                                                           2
                                                 ∂ B x    v ∂ B x   ∂ B y  ∂ B z
                                             −γv     =−γ         + v    + v    .
                                                           2
                                                 ∂x  	    c ∂t  	   ∂y 	    ∂z
                        Substituting this into (2.84) and rearranging (2.85) and (2.86), we obtain
                                      ∂               ∂                ∂ B x
                                        γ(E z + vB y ) −  γ(E y − vB z ) =−  ,
                                     ∂y 	            ∂z  	             ∂t
                                                      ∂                 ∂        v
                                              ∂E x
                                                   −    γ(E z + vB y ) =−  γ B y +  E z ,
                                               ∂z 	  ∂x  	             ∂t  	     c 2
                                               ∂               ∂E x     ∂        v
                                                 γ(E y − vB z ) −  =−    γ B z −   E y .
                                              ∂x  	            ∂y 	    ∂t  	     c 2


                        © 2001 by CRC Press LLC
   48   49   50   51   52   53   54   55   56   57   58