Page 110 -
P. 110

intm=zeros(1,p);
                                   for k=1:p-1
                                   intm(k+1)=intm(k)+0.5*dt*(m(k+1)+m(k));
                                   end
                                subplot(2,2,2)
                                plot(t,intm)
                                title('Modulation Phase')


                                uc=exp(j*(2*pi*fc*t+2*pi*kf*intm));
                                u=real(uc);
                                phase=unwrap(angle(uc))-2*pi*fc*t;
                                subplot(2,2,3)
                                plot(t,u)
                                axis([-0.15 0.15 -1 1])
                                title('Modulated Signal')

                                Dphase(1)=0;
                                   for k=1:p-1
                                   Dphase(k+1)=(2/dt)*(phase(k+1)-phase(k))-...
                                   Dphase(k);
                                   end
                                md=Dphase/(2*pi*kf);
                                subplot(2,2,4)
                                plot(t,md)
                                title('Reconstructed Message')

                              As can be observed by examining Figure 4.1, the results of the simulation
                             are very good, giving confidence in the expressions of the iterators used.






                             4.6  A Better Numerical Integrator: Simpson’s Rule
                             Prior to discussing Simpson’s rule for integration, we shall derive, for a sim-
                             ple case, an important geometrical result.

                             THEOREM
                             The area of a parabolic segment is equal to 2/3 of the area of the circumscribed paral-
                             lelogram.


                             © 2001 by CRC Press LLC
   105   106   107   108   109   110   111   112   113   114   115