Page 145 -
P. 145

x0(k)=fzero('besselj(0,x)',(pi/4)*p(k));
                                x0approx(k)=(pi/4)*p(k)+(1/(2*pi))*(p(k)^(-1))-...
                                   (31/6)*(1/pi^3)*(p(k)^(-3))+...
                                   (3779/15)*(1/pi^5)*(p(k)^(-5));
                                end
                                kk=1:10;
                                subplot(2,1,1);
                                plot(kk,x0,'o')
                                title('Zeros of Zero Order BesselJ Function')
                                subplot(2,1,2);
                                semilogy(kk,x0-x0approx,'o')
                                title('Error in Approximate Values of the Zeros')
                             As you can easily observe by examining Figure 5.2, the approximate series is
                             suitable for calculating all (except the smallest) zeros of the function J (x) cor-
                                                                                         0
                             rectly to at least five digits.


































                              FIGURE 5.2
                              The first ten zeros of the Bessel function J 0 (x). Top panel: The values of the successive zeros
                              (roots) of J 0 (x). Bottom panel: Deviation in the values of these zeros between their exact
                              expressions and their approximate values as given in Eq. (5.21).


                             © 2001 by CRC Press LLC
   140   141   142   143   144   145   146   147   148   149   150