Page 151 - Elements of Distribution Theory
P. 151

P1: JZP
            052184472Xc05  CUNY148/Severini  May 24, 2005  17:53





                                                5.3 Exponential Family Models                137

                          Then
                                                     p n+1 (Y 1 ,..., Y n , y; θ 1 ) p n+1 (Y 1 ,..., Y n , y; θ 0 )

                                                   ∞
                            E(X n+1 |Y 1 ,..., Y n ; θ 0 ) =                               dy
                                                  −∞ p n+1 (Y 1 ,..., Y n , y; θ 0 )  p n (Y 1 ,..., Y n ; θ 0 )
                                                     p n+1 (Y 1 ,..., Y n , y; θ 1 )
                                                   ∞

                                              =                         dy
                                                       p n (Y 1 ,..., Y n ; θ 0 )
                                                  −∞
                                                 p n (Y 1 ,..., Y n ; θ 1 )
                                              =
                                                 p n (Y 1 ,..., Y n ; θ 0 )
                                              = X n .
                          Since (X 1 ,..., X n )isa function of (Y 1 ,..., Y n ),
                           E(X n+1 |X 1 ,..., X n ; θ 0 ) = E[E(X n+1 |X 1 ,..., X n , Y 1 ,..., Y n ; θ 0 )|X 1 ,..., X n ; θ 0 ]
                                               = E[E(X n+1 |Y 1 ,..., Y n ; θ 0 )|X 1 ,..., X n ; θ 0 ]
                                               = E[X n |X 1 ,..., X n ; θ 0 ] = X n .
                        It follows that X 1 , X 2 ,... is a martingale.




                                             5.3 Exponential Family Models
                        Many frequently used families of distributions have a common structure. Consider a family
                                        d
                        of disributions on R , {P(·; θ): θ ∈  }, such that each distribution in the family is either
                        absolutely continuous or discrete with support not depending on θ.For each θ, let p(·; θ)
                        denote either the density function or frequency function corresponding to P(·; θ). The family
                        of distributions is said to be an m-parameter exponential family if each p(·; θ) may be written
                                                        T
                                         p(y; θ) = exp{c(θ) T (y) − A(θ)}h(y), y ∈ Y        (5.1)
                                              m
                                                         m
                                   d
                        where Y ⊂ R , c :   → R , T : Y → R , A :   → R, and h : Y → R .Itis important
                                                                                  +
                        to note that the representation (5.1) is not unique; for example, we may replace c(θ)by
                        c(θ)/2 and T (y)by2T (y).
                        Example 5.9 (Normal distributions). Let Y denote a random variable with a normal dis-
                        tribution with mean µ, −∞ <µ< ∞ and standard deviation σ> 0; then Y has density
                        function
                                           1          1        2
                                         √     exp −     (y − µ)  , −∞ < y < ∞.
                                        σ (2π)       2σ  2
                        Hence, θ = (µ, σ) and   = R × R . This density may be written
                                                    +
                                            1   2   µ    1 µ            1
                                                            2
                                     exp −     y +    y −     − log σ      , y ∈ R.
                                           2σ 2    σ  2  2 σ 2        (2π) 2 1
                                                        2
                        This is of the form (5.1) with T (y) = (y , y),

                                                       1   µ
                                             c(θ) = −    2 ,  2  ,θ = (µ, σ),
                                                      2σ   σ
                                2
                                     2
                        A(θ) = µ /(2σ ) − log σ, h(y) = (2π) −  1 2 , and Y = R. Hence, this is a two-parameter
                        exponential family distribution.
   146   147   148   149   150   151   152   153   154   155   156