Page 309 - Elements of Distribution Theory
P. 309

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                      9.8 Exercises                          295

                        and lim r→∞ y r = 0, then

                                                ∞         ∞

                                                   x j y j =  S j (y j − y j+1 ).
                                                j=m      j=m
                        Example 9.18 (Tail probability of the logarithmic series distribution). Consider approx-
                        imation of the sum
                                                         ∞
                                                             j
                                                           θ /j,
                                                        j=n
                        where 0 <θ < 1, as discussed in Example 9.17. We can apply Theorem 9.18, taking y j =
                                    j
                        1/j and x j = θ . Hence,
                                                     1 − θ  j−n+1
                                                    n
                                              S j = θ         ,  j = n,....
                                                       1 − θ
                        It follows that

                                        ∞   j    ∞        j−n+1
                                           θ        n  1 − θ      1
                                              =    θ
                                            j          1 − θ   j( j + 1)
                                        j=n     j=n
                                                                         j−n+1
                                                  n
                                                       ∞
                                                                    ∞
                                                 θ           1         θ
                                              =                  −             .
                                                1 − θ     j( j + 1)    j( j + 1)
                                                       j=n          j=n
                        Using Corollary 9.3 it is straightforward to show that
                                     ∞              ∞
                                           1            1            1
                                               =             dx + O
                                        j( j + 1)  n  x(x + 1)       n 2
                                     j=n

                                                                  1     1      1
                                               = log(1 + 1/n) + O     =   + O      .
                                                                  n 2   n      n 2
                        Since
                                       ∞    j−n+1   ∞          j
                                           θ                  θ              1

                                                  =                    = O      ,
                                          j( j + 1)    (n + j − 1)(n + j)    n 2
                                       j=n          j=1
                        it follows that
                                          ∞   j     n
                                            θ      θ  1         1
                                               =         1 + O       as n →∞.
                                             j   1 − θ n        n
                                         j=n
                                                     9.8 Exercises

                        9.1 Prove Theorem 9.4.
                        9.2 Show that the beta function β(·, ·) satisfies

                                                      ∞
                                                           r−1
                                                          t
                                             β(r, s) =       s+r  dt, r > 0, s > 0.
                                                     0  (1 + t)
   304   305   306   307   308   309   310   311   312   313   314